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TRANSLATOR’S NOTICE

The modern developments of Thermodynamics, and the ap-
plications to physical and chemical problems, have become so
important, that I have ventured to translate Professor Planck’s
book, which presents the whole subject from a uniform point of
view.

A few notes have been added to the present English edition
by Professor Planck. He has not found it necessary to change
the original text in any way.

To bring the notation into conformity with the usual English
notation, several symbols have been changed. This has been
done with the author’s sanction. Here I have followed J. J.
van Laar and taken Ψ to signify what he calls the Planck’sches
Potential, i.e. the thermodynamic potential of Gibbs and Duhem
divided by −θ.

Professor Planck’s recent paper, “Über die Grundlage der
Lösungstheorie” (Ann. d. Phys. 10, p. 436, 1903), ought to be
read in connection with his thermodynamical theory of solution.

I am indebted to Herren Veit & Co., Leipzig, for kindly sup-
plying the blocks of the five figures in the text.

A. O.

Devonport,

June, 1903.



PREFACE

The oft-repeated requests either to publish my collected papers
on Thermodynamics, or to work them up into a comprehensive
treatise, first suggested the writing of this book. Although the
first plan would have been the simpler, especially as I found no
occasion to make any important changes in the line of thought
of my original papers, yet I decided to rewrite the whole subject-
matter, with the intention of giving at greater length, and with
more detail, certain general considerations and demonstrations
too concisely expressed in these papers. My chief reason, how-
ever, was that an opportunity was thus offered of presenting the
entire field of Thermodynamics from a uniform point of view.
This, to be sure, deprives the work of the character of an original
contribution to science, and stamps it rather as an introductory
text-book on Thermodynamics for students who have taken ele-
mentary courses in Physics and Chemistry, and are familiar with
the elements of the Differential and Integral Calculus.

Still, I do not think that this book will entirely supersede
my former publications on the same subject. Apart from the
fact that these contain, in a sense, a more original presentation,
there may be found in them a number of details expanded at
greater length than seemed advisable in the more comprehens-
ive treatment here required. To enable the reader to revert in
particular cases to the original form for comparison, a list of
my publications on Thermodynamics has been appended, with
a reference in each case to the section of the book which deals
with the same point.

The numerical values in the examples, which have been
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worked, as applications of the theory, have, almost all of them,
been taken from the original papers; only a few, that have been
determined by frequent measurement, have been taken from
the tables in Kohlrausch’s “Leitfaden der praktischen Physik.”
It should be emphasized, however, that the numbers used,
notwithstanding the care taken, have not undergone the same
amount of critical sifting as the more general propositions and
deductions.

Three distinct methods of investigation may be clearly recog-
nized in the previous development of Thermodynamics. The first
penetrates deepest into the nature of the processes considered,
and, were it possible to carry it out exactly, would be designated
as the most perfect. Heat, according to it, is due to the defin-
ite motions of the chemical molecules and atoms considered as
distinct masses, which in the case of gases possess comparat-
ively simple properties, but in the case of solids and liquids can
be only very roughly sketched. This kinetic theory, founded by
Joule, Waterston, Krönig and Clausius, has been greatly exten-
ded mainly by Maxwell and Boltzmann. Obstacles, at present
unsurmountable, however, seem to stand in the way of its fur-
ther progress. These are due not only to the highly complicated
mathematical treatment, but principally to essential difficulties,
not to be discussed here, in the mechanical interpretation of the
fundamental principles of Thermodynamics.

Such difficulties are avoided by the second method, de-
veloped by Helmholtz. It confines itself to the most important
hypothesis of the mechanical theory of heat, that heat is due
to motion, but refuses on principle to specialize as to the char-
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acter of this motion. This is a safer point of view than the
first, and philosophically quite as satisfactory as the mechanical
interpretation of nature in general, but it does not as yet offer a
foundation of sufficient breadth upon which to build a detailed
theory. Starting from this point of view, all that can be obtained
is the verification of some general laws which have already been
deduced in other ways direct from experience.

A third treatment of Thermodynamics has hitherto proved
the most fruitful. This method is distinct from the other two,
in that it does not advance the mechanical theory of heat, but,
keeping aloof from definite assumptions as to its nature, starts
direct from a few very general empirical facts, mainly the two
fundamental principles of Thermodynamics. From these, by
pure logical reasoning, a large number of new physical and chem-
ical laws are deduced, which are capable of extensive application,
and have hitherto stood the test without exception.

This last, more inductive, treatment, which is used exclus-
ively in this book, corresponds best to the present state of the
science. It cannot be considered as final, however, but may
have in time to yield to a mechanical, or perhaps an electro-
magnetic theory. Although it may be of advantage for a time
to consider the activities of nature—Heat, Motion, Electricity,
etc.—as different in quality, and to suppress the question as to
their common nature, still our aspiration after a uniform the-
ory of nature, on a mechanical basis or otherwise, which has
derived such powerful encouragement from the discovery of the
principle of the conservation of energy, can never be permanently
repressed. Even at the present day, a recession from the assump-
tion that all physical phenomena are of a common nature would
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be tantamount to renouncing the comprehension of a number
of recognized laws of interaction between different spheres of
natural phenomena. Of course, even then, the results we have
deduced from the two laws of Thermodynamics would not be
invalidated, but these two laws would not be introduced as in-
dependent, but would be deduced from other more general pro-
positions. At present, however, no probable limit can be set to
the time which it will take to reach this goal.

THE AUTHOR.

Berlin,

April, 1897.
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TREATISE
ON

THERMODYNAMICS
PART I.

Fundamental Facts and Definitions.

CHAPTER I.

TEMPERATURE.

§ 1. The conception of “heat” arises from that particular sen-
sation of warmth or coldness which is immediately experienced
on touching a body. This direct sensation, however, furnishes no
quantitative scientific measure of a body’s state with regard to
heat; it yields only qualitative results, which vary according to
external circumstances. For quantitative purposes we utilize the
change of volume which takes place in all bodies when heated
under constant pressure, for this admits of exact measurement.
Heating produces in most substances an increase of volume, and
thus we can tell whether a body gets hotter or colder, not merely
by the sense of touch, but also by a purely mechanical observa-
tion affording a much greater degree of accuracy. We can also
tell accurately when a body assumes a former state of heat.

§ 2. If two bodies, one of which feels warmer than the other,
be brought together (for example, a piece of heated metal and
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cold water), it is invariably found that the hotter body is cooled,
and the colder one is heated up to a certain point, and then all
change ceases. The two bodies are then said to be in thermal
equilibrium. Experience shows that such a state of equilibrium
finally sets in, not only when two, but also when any number
of differently heated bodies are brought into mutual contact.
From this follows the important proposition: If a body, A, be
in thermal equilibrium with two other bodies, B and C, then
B and C are in thermal equilibrium with one another.∗ For, if
we bring A, B, and C together so that each touches the other
two, then, according to our supposition, there will be equilibrium
at the points of contact AB and AC, and, therefore, also at the
contact BC. If it were not so, no general thermal equilibrium
would be possible, which is contrary to experience.

§ 3. These facts enable us to compare the degree of heat of
two bodies, B and C, without bringing them into contact with
one another; namely, by bringing each body into contact with
an arbitrarily selected standard body, A (for example, a mass
of mercury enclosed in a vessel terminating in a fine capillary
tube). By observing the volume of A in each case, it is possible
to tell whether B and C are in thermal equilibrium or not. If
they are not in thermal equilibrium, we can tell which of the
two is the hotter. The degree of heat of A, or of any body in
thermal equilibrium with A, can thus be very simply defined by
the volume of A, or, as is usual, by the difference between the

∗As is well known, there exists no corresponding proposition
for electrical equilibrium. For if we join together the substances
Cu|CuSO4 aq.|ZnSO4 aq.|Zn to form a conducting ring, no electrical
equilibrium is possible.
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volume of A and its volume when in thermal equilibrium with
melting ice under atmospheric pressure. This volumetric differ-
ence, which, by an appropriate choice of unit, is made to read
100 when A is in contact with steam under atmospheric pressure,
is called the temperature in degrees Centigrade with regard to A
as thermometric substance. Two bodies of equal temperature
are, therefore, in thermal equilibrium, and vice versâ.

§ 4. The temperature readings of no two thermometric sub-
stances agree, in general, except at 0◦ and 100◦. The defini-
tion of temperature is therefore somewhat arbitrary. This we
may remedy to a certain extent by taking gases, in particular
those hard to condense, such as hydrogen, oxygen, nitrogen,
and carbon monoxide, as thermometric substances. They agree
almost completely within a considerable range of temperature,
and their readings are sufficiently in accordance for most pur-
poses. Besides, the coefficient of expansion of these different
gases is the same, inasmuch as equal volumes of them expand
under constant pressure by the same amount—about 1

273
of their

volume—when heated from 0◦ C. to 1◦ C. Since, also, the influ-
ence of the external pressure on the volume of these gases can
be represented by a very simple law, we are led to the conclusion
that these regularities are based on a remarkable simplicity in
their constitution, and that, therefore, it is reasonable to define
the common temperature given by them simply as temperature.
We must consequently reduce the readings of other thermomet-
ers to those of the gas thermometer, and preferably to those of
the hydrogen thermometer.

§ 5. The definition of temperature remains arbitrary in cases
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where the requirements of accuracy cannot be satisfied by the
agreement between the readings of the different gas thermomet-
ers, for there is no sufficient reason for the preference of any one
of these gases. A definition of temperature completely independ-
ent of the properties of any individual substance, and applicable
to all stages of heat and cold, becomes first possible on the basis
of the second law of thermodynamics (§ 160, etc.). In the mean
time, only such temperatures will be considered as are defined
with sufficient accuracy by the gas thermometer.

§ 6. In the following we shall deal chiefly with homogen-
eous, isotropic bodies of any form, possessing throughout their
substance the same temperature and density, and subject to a
uniform pressure acting everywhere perpendicular to the sur-
face. They, therefore, also exert the same pressure outwards.
Surface phenomena are thereby disregarded. The condition of
such a body is determined by its chemical nature; its mass, M ;
its volume, V ; and its temperature, t. On these must depend, in
a definite manner, all other properties of the particular state of
the body, especially the pressure, which is uniform throughout,
internally and externally. The pressure, p, is measured by the
force acting on the unit of area—in the C.G.S. system, in dynes
per square centimeter, a dyne being the force which imparts to
a mass of one gramme in one second a velocity of one centimeter
per second.

§ 7. As the pressure is generally given in atmospheres, the
value of an atmosphere in absolute C.G.S. units is here calcu-
lated. The pressure of an atmosphere is the weight of a column
of mercury at 0◦ C., 76 cm. high, and 1 sq. cm. in cross-section,
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when placed in mean geographical latitude. This latter condi-
tion must be added, because the weight, i.e. the force of the
earth’s attraction, varies with the locality. The volume of the
column of mercury is 76 cm.3; and since the density of mercury
at 0◦ C. is 13.596, the mass is 76 × 13.596. Multiplying the
mass by the acceleration of gravity in mean latitude, we find
the pressure of one atmosphere in absolute units to be

76× 13.596× 981 = 1, 013, 650
dynes

cm.2
or

gr.

cm.-sec.2
.

This, then, is the factor for converting atmospheres into abso-
lute units. If, as was formerly the custom in mechanics, we use
as the unit of force the weight of a gramme in mean geograph-
ical latitude instead of the dyne, the pressure of an atmosphere
would be 76× 13.596 = 1033.3 grms. per square centimeter.

§ 8. Since the pressure in a given substance is evidently
controlled by its internal physical condition only, and not by its
form or mass, it follows that p depends only on the temperature
and the ratio of the mass M to the volume V (i.e. the density),
or on the reciprocal of the density, the volume of unit mass—

V

M
= v,

which is called the specific volume of the substance. For every
substance, then, there exists a characteristic relation—

p = f(v, t),

which is called the characteristic equation of the substance. For
gases, the function f is invariably positive; for liquids and solids,
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however, it may have also negative values under certain circum-
stances.

§ 9. Perfect Gases.—The characteristic equation assumes
its simplest form for the substances which we used in § 4 for the
definition of temperature. If the temperature be kept constant,
then, according to the Boyle-Mariotte law, the product of the
pressure and the specific volume remains constant for gases—

pv = T, (1)

where T , for a given gas, depends only on the temperature.
But if the pressure be kept constant, then, according to § 3,

the temperature is proportional to the difference between the
present volume v and the volume v0 at 0◦; i.e.—

t = (v − v0)P, (2)

where P depends only on the pressure p. Equation (1) for v0
becomes

pv0 = T0, (3)

where T0 is the value of the function T , when t = 0◦ C.
Finally, as has already been mentioned in § 4, the expansion

of all permanent gases on heating from 0◦ C. to 1◦ C. is the same
fraction α (about 1

273
) of their volume at 0◦ (Gay-Lussac’s law).

Putting t = 1, we have v− v0 = αv0, and equation (2) becomes

1 = αv0P. (4)

By eliminating P , v0, and v from (1), (2), (3), (4), we obtain
the temperature function of the gas—

T = T0(1 + αt),
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which is seen to be a linear function of t. The characteristic
equation (1) becomes

p =
T0
v

(1 + αt).

§ 10. The form of this equation is considerably simplified by

shifting the zero of temperature, arbitrarily fixed in § 3, by
1

α

degrees, and calling the melting point of ice, not 0◦ C., but
1◦

α
C.

(i.e. about 273◦ C.). For, putting t +
1

α
= θ (absolute temper-

ature), and the constant αT0 = C, the characteristic equation
becomes

p =
C

v
θ =

CM

V
θ. (5)

This introduction of absolute temperature is evidently tan-
tamount to measuring temperature no longer, as in § 3, by a
change of volume, but by the volume itself.

§ 11. The constant C, which is characteristic for the per-
fect gas under consideration, can be calculated, if the specific
volume v be known for any pair of values of θ and p (e.g. 0◦ and
1 atmosphere). For different gases, taken at the same temper-
ature and pressure, the constants C evidently vary directly as

the specific volumes, or inversely as the densities
1

v
. It may be

affirmed, then, that, taken at the same temperature and pres-
sure, the densities of all perfect gases bear a constant ratio to
one another. A gas is, therefore, often characterized by the con-
stant ratio which its density bears to that of a normal gas at the
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same temperature and pressure (specific density relative to air
or hydrogen). At 0◦ C. (θ = 273◦) and 1 atmosphere pressure,
the densities of the following gases are:

Hydrogen 0.00008988
gr.

cm.3
Oxygen 0.0014291
Nitrogen 0.0012507
Atmospheric nitrogen 0.0012571
Air 0.0012930

whence the corresponding values of C in absolute units can be
readily calculated.

All questions with regard to the behaviour of a substance
when subjected to changes of temperature, volume, and pressure
are completely answered by the characteristic equation of the
substance.

§ 12. Behaviour under Constant Pressure (Isopiestic or
Isobaric Changes).—Coefficient of expansion is the name given
to the ratio of the increase of volume for a rise of temperature
of 1◦ C. to the volume at 0◦ C. This increase for a perfect gas is,

according to (5),
CM

p
. The same equation (5) gives the volume

of the gas at 0◦ C. as
CM

p
× 273, hence the ratio of the two

quantities, or the coefficient of expansion, is 1
273

= α.

§ 13. Behaviour at Constant Volume (Isochoric or Iso-
pycnic Changes).—The pressure coefficient is the ratio of the
increase of pressure for a rise of temperature of 1◦ to the pres-
sure at 0◦ C. For a perfect gas, this increase, according to equa-

tion (5), is
CM

V
. The pressure at 0◦ C. is

CM

V
× 273, whence
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the required ratio, i.e. the pressure coefficient, is 1
273

, therefore
equal to the coefficient of expansion α.

§ 14. Behaviour at Constant Temperature (Isothermal
Changes).—Coefficient of elasticity is the ratio of an infinitely
small increase of pressure to the resulting contraction of unit
volume of the substance. In a perfect gas, according to equa-
tion (5), the contraction of volume V , in consequence of an in-
crease of pressure dp, is

dV =
CMθ

p2
dp =

V

p
dp.

The contraction of unit volume is therefore

−dV
V

=
dp

p
,

and the coefficient of elasticity of the gas is

dp

dp

p

= p,

that is, equal to the pressure.
The reciprocal of the coefficient of elasticity, i.e. the ratio of

an infinitely small contraction of unit volume to the correspond-
ing increase of pressure, is called the coefficient of compressibil-
ity.

§ 15. The three coefficients which characterize the behaviour
of a substance subject to isopiestic, isopycnic, and isothermal
changes are not independent of one another, but are in every
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case connected by a definite relation. The general characteristic
equation, on being differentiated, gives

dp =

(
∂p

∂θ

)

v

dθ +

(
∂p

∂v

)

θ

dv,

where the suffixes indicate the variables to be kept constant
while performing the differentiation. By putting dp = 0 we
impose the condition of an isopiestic change, and obtain the
relation between dv and dθ in isopiestic processes:—

(
∂v

∂θ

)

p

= −

(
∂p

∂θ

)

v(
∂p

∂v

)

θ

. (6)

For every state of a substance, one of the three coefficients,
viz. of expansion, of pressure, or of compressibility, may there-
fore be calculated from the other two.

Take, for example, mercury at 0◦ C. and under atmospheric
pressure. Its coefficient of expansion is (§ 12)

(
∂v

∂θ

)

p

· 1

v0
= 0.00018,

its coefficient of compressibility in atmospheres (§ 14) is

−
(
∂v

∂p

)

θ

· 1

v0
= 0.000003,
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therefore its pressure coefficient in atmospheres (§ 13) is

(
∂p

∂θ

)

v

= −
(
∂p

∂v

)

θ

·
(
∂v

∂θ

)

p

= −

(
∂v

∂θ

)

p(
∂v

∂p

)

θ

=
0.00018

0.000003
= 60.

This means that an increase of pressure of 60 atmospheres is
required to keep the volume of mercury constant when heated
from 0◦ C. to 1◦ C.

§ 16. Mixture of Perfect Gases.—If any quantities of
the same gas at the same temperatures and pressures be at first
separated by partitions, and then allowed to come suddenly in
contact with another by the removal of these partitions, it is
evident that the volume of the entire system will remain the
same and be equal to the sum-total of the partial volumes.
Starting with quantities of different gases, experience still shows
that, when pressure and temperature are maintained uniform
and constant, the total volume continues equal to the sum of
the volumes of the constituents, notwithstanding the slow pro-
cess of intermingling—diffusion—which takes place in this case.
Diffusion goes on until the mixture has become at every point
of precisely the same composition, i.e. physically homogeneous.

§ 17. Two views regarding the constitution of mixtures thus
formed present themselves. Either we might assume that the in-
dividual gases, while mixing, split into a large number of small
portions, all retaining their original volumes and pressures, and
that these small portions of the different gases, without penet-
rating each other, distribute themselves evenly throughout the
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entire space. In the end each gas would still retain its original
volume (partial volume), and all the gases would have the same
common pressure. Or, we might suppose—and this view will be
shown below (§ 32) to be the correct one—that the individual
gases change and interpenetrate in every infinitesimal portion
of the volume, and that after diffusion each individual gas, in
so far as one may speak of such, fills the total volume, and is
consequently under a lower pressure than before, diffusion. This
so-called partial pressure of a constituent of a gas mixture can
easily be calculated.

§ 18. Denoting the quantities referring to the individual
gases by suffixes—θ and p requiring no special designation, as
they are supposed to be the same for all the gases,—the charac-
teristic equation (5) gives for each gas before diffusion

p =
C1M1θ

V1
; p =

C2M2θ

V2
; . . . .

The total volume,

V = V1 + V2 + . . . ,

remains constant during diffusion. After diffusion we ascribe
to each gas the total volume, and hence the partial pressures
become

p1 =
C1M1θ

V
=
V1
V
p; p2 =

C2M2θ

V
=
V2
V
p; . . . , (7)

and by addition

p1 + p2 + · · · = V1 + V2 + . . .

V
p = p. (8)
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This is Dalton’s law, that in a homogeneous mixture of gases
the pressure is equal to the sum of the partial pressures of the
gases. It is also evident that

p1 : p2 : · · · = V1 : V2 : · · · = C1M1 : C2M2 : . . . , (9)

i.e. the partial pressures are proportional to the volumes of the
gases before diffusion, or to the partial volumes which the gases
would have according to the first view of diffusion given above.

§ 19. The characteristic equation of the mixture, according
to (7) and (8), is

p = (C1M1 + C2M2 + . . . )
θ

V

=

(
C1M1 + C2M2 + . . .

M

)
M

V
θ (10)

which corresponds to the characteristic equation of a perfect gas
with the following characteristic constant:—

C =
C1M1 + C2M2 + . . .

M1 +M2 + . . .
. (11)

Hence the question as to whether a perfect gas is a chemically
simple one, or a mixture of chemically different gases, cannot
in any case be settled by the investigation of the characteristic
equation.

§ 20. The composition of a gas mixture is defined, either
by the ratios of the masses, M1, M2, . . . or by the ratios of the
partial pressures p1, p2, . . . or the partial volumes V1, V2, . . . of
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the individual gases. Accordingly we speak of per cent. by weight
or by volume. Let us take for example atmospheric air, which
is a mixture of oxygen (1) and “atmospheric” nitrogen (2).

The ratio of the densities of oxygen, “atmospheric” nitrogen
and air is, according to § 11,

0.0014291 : 0.0012571 : 0.0012930 =
1

C1

:
1

C2

:
1

C3

.

Taking into consideration the relation (11)—

C =
C1M1 + C2M2

M1 +M2

,

we find the ratio M1 : M2 = 0.2998, i.e. 23.1 per cent. by weight
of oxygen and 76.9 per cent. of nitrogen. Furthermore,

C1M1 : C2M2 = p1 : p2 = V1 : V2 = 0.2637

i.e. 20.9 per cent. by volume of oxygen and 79.1 per cent. of
nitrogen.

§ 21. Characteristic Equation of Other Substances.—
The characteristic equation of perfect gases, even in the case
of the substances hitherto discussed, is only an approximation,
though a close one, to the actual facts. A still further devi-
ation from the behaviour of perfect gases is shown by the other
gaseous bodies, especially by those easily condensed, which for
this reason were formerly classed as vapours. For these a modi-
fication in the form of the characteristic equation is necessary. It
is worthy of notice, however, that the more rarefied the state in
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which we observe these gases, the less does their behaviour de-
viate from that of perfect gases, so that all gaseous substances,
when sufficiently rarefied, may be said in general to act like
perfect gases. The general characteristic equation of gases and
vapours, for very large values of v, will pass over, therefore, into
the special form for perfect gases.

§ 22. We may obtain by various graphical methods an idea
of the character and magnitude of the deviations from the ideal
gaseous state. An isothermal curve may, e.g., be drawn, taking
v and p for some given temperature as the abscissa and ordinate,
respectively, of a point in a plane. The entire system of isotherms
gives us a complete representation of the characteristic equation.
The more the behaviour of the vapour in question approaches
that of a perfect gas, the closer do the isotherms approach those
of equilateral hyperbolæ having the rectangular co-ordinate axes
for asymptotes, for pv = const. is the equation of an isotherm of
a perfect gas. The deviation from the hyperbolic form yields at
the same time a measure of the departure from the ideal state.

§ 23. The deviations become still more apparent when the
isotherms are drawn taking the product pv (instead of p) as
the ordinate and say p as the abscissa. Here a perfect gas has
evidently for its isotherms straight lines parallel to the axis of
abscissæ. In the case of actual gases, however, the isotherms
slope gently towards a minimum value of pv, the position of
which depends on the temperature and the nature of the gas.
For lower pressures (i.e. to the left of the minimum), the volume
decreases at a more rapid rate, with increasing pressure, than
in the case of perfect gases; for higher pressures (to the right
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of the minimum), at a slower rate. At the minimum point the
compressibility coincides with that of a perfect gas. In the case
of hydrogen the minimum lies far to the left, and it has hitherto
been possible to observe it only at very low temperatures.

§ 24. To van der Waals is due the first analytical formula for
the general characteristic equation, applicable also to the liquid
state. He also explained physically, on the basis of the kinetic
theory of gases, the deviations from the behaviour of perfect
gases. As we do not wish to introduce here the hypothesis of
the kinetic theory, we consider van der Waals’ equation merely
as an approximate expression of the facts. His equation is

p =
Rθ

v − b
− a

v2
,

where R, a, and b are constants which depend on the nature of
the substance. For large values of v, the equation, as required,
passes into that of a perfect gas; for small values of v and cor-
responding values of θ, it represents the characteristic equation
of a liquid.

Expressing p in atmospheres and calling the specific volume v
unity for θ = 273 and p = 1, van der Waals’ constants for carbon
dioxide are

R = 0.00369; a = 0.00874; b = 0.0023.

As the volume of 1 gr. of carbon dioxide at 0◦ C. and atmo-
spheric pressure is 505 cm.3, the values of v calculated from the
formula must be multiplied by 505 to obtain the specific volumes
in absolute units.
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§ 25. Van der Waals’ equation not being sufficiently accur-
ate, Clausius supplemented it by the introduction of an addi-
tional constant. Clausius’ equation is

p =
Rθ

v − a
− c

θ(v + b)2
. (12)

For large values of v, this too approaches the ideal characteristic
equation. In the same units as above, Clausius’ constants for
carbon dioxide are:

R = 0.003688; a = 0.000843; b = 0.000977; c = 2.0935.

Andrews’ observations on the compressibility of gaseous and
liquid carbon dioxide are satisfactorily represented by Clausius’
equation.

§ 26. If we draw the system of isotherms with the aid of
Clausius’ equation, employing the graphical method described
in § 22, the characteristic graphs for carbon dioxide—Fig. 1—
are obtained.∗ For high temperatures the isotherms approach
equilateral hyperbolæ, as may be seen from equation (12). In
general, however, the isotherm is a curve of the third degree,
three values of v corresponding to one of p. Hence, in general,
a straight line parallel to the axis of abscissæ intersects an iso-
therm in three points, of which two, as actually happens for
large values of θ, may be imaginary. At high temperatures there
is, consequently, only one real volume corresponding to a given
pressure, while at lower temperatures, there are three real values

∗For the calculation and construction of the curves, I am indebted to
Dr. Richard Apt.
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of the volume for a given pressure. Of these three values (indic-
ated on the figure by α, β, γ, for instance) only the smallest (α)
and the largest (γ) represent practically realizable states, for
at the middle point (β) the pressure along the isotherm would
increase with increasing volume, and the compressibility would
accordingly be negative. Such a state has, therefore, only a
theoretical signification.

§ 27. The point α corresponds to liquid carbon dioxide, and
γ to the gaseous condition at the temperature of the isotherm
passing through the points and under the pressure measured
by the ordinates of the line αβγ. In general only one of these
states is stable (in the figure, the liquid state at α). For, if we
compress gaseous carbon dioxide, enclosed in a cylinder with a
movable piston, at constant temperature, e.g. at 20◦ C., the gas
assumes at first states corresponding to consecutive points on
the 20◦ isotherm to the extreme right. The point representative
of the physical state of the gas, then moves farther and farther
to the left until it reaches a certain place C. After this, further
compression does not move the point beyond C, but there now
takes place a partial condensation of the substance—a splitting
into a liquid and a gaseous portion. Both parts, of course, pos-
sess common pressure and temperature. The state of the gaseous
portion continues to be characterized by the point C, that of the
liquid portion by the point A of the same isotherm. C is called
the saturation point of carbon dioxide gas for the particular tem-
perature considered. Isothermal compression beyond C merely
results in precipitating more of the vapour in liquid form. Dur-
ing this part of the isothermal compression no change takes place
but the condensation of more and more vapour; the internal con-
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ditions (pressure, temperature, specific volume) of both parts of
the substance are always represented by the two points A and C.
At last, when all the vapour has been condensed, the whole sub-
stance is in the liquid condition A, and again behaves as a homo-
geneous substance, so that further compression gives an increase
of density and pressure along the isotherm. The substance will
now pass through the point α of the figure. On this side, as may
be seen from the figure, the isotherm is much steeper than on
the other, i.e. the compressibility is much smaller. At times, it
is possible to follow the isotherm beyond the point C towards
the point γ, and to prepare a so-called supersaturated vapour.
Then only a more or less unstable condition of equilibrium is
obtained, as may be seen from the fact that the smallest dis-
turbance of the equilibrium is sufficient to cause an immediate
condensation. The substance passes by a jump into the stable
condition. Nevertheless, by the study of supersaturated vapours,
the theoretical part of the curve also receives a direct meaning.

§ 28. On any isotherm, which for certain values of p ad-
mits of three real values of v, there are, therefore, two definite
points, A and C, corresponding to the state of saturation. The
position of these points is not immediately deducible from the
graph of the isotherm. The propositions of thermodynamics,
however, lead to a simple way of finding these points, as will
be seen in § 172. The higher the temperature, the smaller be-
comes the region in which lines drawn parallel to the axis of ab-
scissæ intersect the isotherm in three real points, and the closer
will these three points approach one another. The transition
to the hyperbola-like isotherms, which any parallel to the axis
of abscissæ cuts in one point only, is formed by that particular
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isotherm on which the three points of intersection coalesce into
one, giving a point of inflection. The tangent to the curve at this
point is parallel to the axis of abscissæ. It is called the critical
point (K of Fig. 1) of the substance, and its position indicates
the critical temperature, the critical specific volume, and the
critical pressure of the substance. Here there is no longer any
difference between the saturated vapour and its liquid precipit-
ate. Above the critical temperature and critical pressure, con-
densation does not exist, as the diagram plainly shows. Hence
all attempts to condense hydrogen, oxygen, and nitrogen neces-
sarily failed as long as the temperature had not been reduced
below the critical temperature, which is very low for these gases.

§ 29. It further appears from our figure that there is no def-
inite boundary between the gaseous and liquid states, since from
the region of purely gaseous states, as at C, that of purely liquid
ones, as at A, may be reached on a circuitous path that nowhere
passes through a state of saturation—on a curve, for instance,
drawn around the critical point. Thus a vapour may be heated
at constant volume above the critical temperature, then com-
pressed at constant temperature below the critical volume, and
finally cooled under constant pressure below the critical tem-
perature. Condensation nowhere occurs in this process, which
leads, nevertheless, to a region of purely liquid states. The
earlier fundamental distinction between liquids, vapours, and
gases should therefore be dropped as no longer tenable. A more
modern proposal to denote as gaseous all states above the crit-
ical temperature, and as vaporous or liquid all others according
as they lie to the right or left of the theoretical regions (Fig. 1),
has also this disadvantage, that thereby a boundary is drawn
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between liquid and gas on the one hand, and vapour and gas on
the other hand, which has no physical meaning. The crossing
of the critical temperature at a pressure other than the crit-
ical pressure differs in no way from the crossing of any other
temperature.

§ 30. The position of the critical point may be readily calcu-
lated from the general characteristic equation. According to § 28
we have (

∂p

∂v

)

θ

= 0, and

(
∂2p

∂v2

)

θ

= 0.

The first of these means that the tangent to the isotherm at K is
parallel to the axis of abscissæ; and the second, that the isotherm
has a point of inflection at K. On the basis of Clausius’ form of
the characteristic equation (12), we obtain for the critical point

θ2 =
8c

27(a+ b)R
, p2 =

cR

216(a+ b)3
, v = 3a+ 2b.∗
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These equations give for carbon dioxide from the above data

θ = 304 = 273◦ + 31◦, p = 77 atm., v = 2.27
cm.3

gr.
.

Qualitatively, all substances conform to these regularities, but
the values of the constants differ widely.

§ 31. Regarding the transition from the liquid to the solid
state, the same considerations hold as for that from the gaseous

∗Obtained as follows:—

p =
Rθ

v − a
− c

θ(v + b)2
, (1)

(
∂p

∂v

)

θ

= − Rθ

(v − a)2
+

2c

θ(v + b)3
= 0, (2)

(
∂2p

∂v2

)

θ

=
2Rθ

(v − a)3
− 6c

θ(v + b)4
= 0. (3)

From (2) and (3),

v = 3a+ 2b. (4)

Substituting (4) in (2) and reducing, we get

θ2 =
8c

27(a+ b)R
. (5)

And substituting (4) and (5) in (1) and reducing, we have

p2 =
cR

216(a+ b)3
. (6) Tr.
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to the liquid state. The system of isotherms might be drawn
for this process, and it is probable that theoretical regions and a
critical point would be verified here also, if the means of experi-
mental investigation were adequate. A continuous passage from
the liquid to the solid state would then become possible along
a path intersecting the critical isotherm on either side of the
critical point. In fact, there are certain substances which under
ordinary pressures pass without appreciable discontinuity from
the solid to the liquid state (pitch, glass, etc.), while others pos-
sess for a definite temperature a definite pressure of liquefaction
or pressure of solidification, at which the substance splits into
two portions of different densities. The pressure of liquefaction,
however, varies with temperature at a much greater rate than
the pressure of the saturated vapour. This view is physically
justified, in particular by the experiments of Barus and Spring,
in which the pressures were varied within wide limits.

In its most complete form the characteristic equation would
comprise the gaseous, liquid, and solid states simultaneously. No
formula of such generality, however, has as yet been established
for any substance.

§ 32. Mixtures.—While, as shown in § 19, the character-
istic equation of a mixture of perfect gases reduces in a simple
manner to that of its components, no such simplification takes
place, in general, when substances of any kind are mixed. Only
for gases and vapours does Dalton’s law hold, at least with great
approximation, that the total pressure of a mixture is the sum of
the partial pressures which each gas would exert if it alone filled
the total volume at the given temperature. This law enables
us to establish the characteristic equation of any gas mixture,
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provided that of the constituent gases be known. It also decides
the question, unanswered in § 17, whether to the individual gases
of a mixture common pressure and different volumes, or com-
mon volume and different pressures, should be ascribed. From
the consideration of a vapour differing widely from an ideal gas,
it follows that the latter of these views is the only one admissible.
Take, for instance, atmospheric air and water vapour at 0◦ C.
under atmospheric pressure. Here the water vapour cannot be
supposed to be subject to a pressure of 1 atm., since at 0◦ C. no
water vapour exists at this pressure. The only choice remaining
is to assign to the air and water vapour a common volume (that
of the mixture) and different pressures (partial pressures).

For mixtures of solid and liquid substances no law of general
validity has been found, that reduces the characteristic equation
of the mixture to those of its constituents.



CHAPTER II.

MOLECULAR WEIGHT.

§ 33. In the preceding chapter only such physical changes have
been discussed as concern temperature, pressure, and density.
The chemical constitution of the substance or mixture in ques-
tion has been left untouched. Cases are frequent, however (much
more so, in fact, than was formerly supposed) in which the chem-
ical nature of a substance is altered by a change of temperature
or pressure. The more recent development of thermodynamics
has clearly brought out the necessity of establishing a funda-
mental difference between physical and chemical changes such
as will exclude continuous transition from the one kind to the
other (cf. § 42, et seq., and § 238). It has, however, as yet not
been possible to establish a practical criterion for distinguishing
them, applicable to all cases. However strikingly most chemical
processes differ from physical ones in their violence, suddenness,
development of heat, changes of colour and other properties, yet
there are, on the other hand, numerous changes of a chemical
nature that take place with continuity and comparative slow-
ness; for example, dissociation. One of the main tasks of phys-
ical chemistry in the near future will be the further elucidation
of this essential difference.∗

∗In a word, we may, in a certain sense, say, that physical changes take
place continuously, chemical ones, on the other hand, discontinuously. In
consequence, the science of physics deals, primarily, with continuously vary-
ing numbers, the science of chemistry, on the contrary, with whole, or with
simple rational numbers.
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§ 34. Experience shows that all chemical reactions take
place according to constant proportions by weight. A certain
weight (strictly speaking, a mass) may therefore be used as a
characteristic expression for the nature of a given chemically
homogeneous substance, whether an element or a compound.
Such a weight is called an equivalent weight. It is arbitrarily
fixed for one element—generally for hydrogen at 1 gr.—and then
the equivalent weight of any other element (e.g. oxygen) is that
weight which will combine with 1 gr. of hydrogen. The weight
of the compound thus formed is, at the same time, its equival-
ent weight. By proceeding in this way, the equivalent weights
of all chemically homogeneous substances may be found. The
equivalent weights of elements that do not combine directly with
hydrogen can easily be determined, since in every case a number
of elements can be found that combine directly with the element
in question and also with hydrogen.

The total weight of a body divided by its equivalent weight
is called the number of equivalents contained in the body. Hence
we may say that, in every chemical reaction, an equal number of
equivalents of the different substances react with one another.

§ 35. There is, however, some ambiguity in the above defin-
ition, since two elements frequently combine in more ways than
one. For such cases there would exist several values of the equi-
valent weight. Experience shows, however, that the various pos-
sible values are always simple multiples or submultiples of any
one of them. The ambiguity in the equivalent weight, there-
fore, reduces itself to multiplying or dividing that quantity by
a simple integer. We must accordingly generalize the foregoing
statement, that an equal number of equivalents react with one
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another, and say, that the number of equivalents that react with
one another are in simple numerical proportions. Thus 16 parts
by weight of oxygen combine with 28 parts by weight of nitrogen
to form nitrous oxide, or with 14 parts to form nitric oxide, or
with 91

3
parts to form nitrous anhydride, or with 7 parts to form

nitrogen tetroxide, or with 53
5

parts to form nitric anhydride.
Any one of these numbers may be assigned to nitrogen as its
equivalent weight, if 16 be taken as that of oxygen. They are in
simple rational proportions, since

28 : 14 : 91
3

: 7 : 53
5

= 60 : 30 : 20 : 15 : 12.

§ 36. The ambiguity in the definition of the equivalent
weight of nitrogen, exemplified by the above series of numbers,
is removed by selecting a particular one of them to denote the
molecular weight of nitrogen. In the definition of the molecular
weight as a quite definite quantity depending only on the partic-
ular state of a substance, and independent of possible chemical
reactions with other substances, lies one of the most important
and most fruitful achievements of theoretical chemistry. Its ex-
act statement can at present be given only for special cases, viz.
for perfect gases and dilute solutions. We need consider only
the former of these, as we shall see from thermodynamics that
the latter is also thereby determined.

The definition of the molecular weight for a chemically homo-
geneous perfect gas is rendered possible by the further empirical
law, that gases combine, not only in simple multiples of their
equivalents, but also, at the same temperature and pressure, in
simple volume proportions (Gay-Lussac). It immediately follows
that the number of equivalents, contained in equal volumes of
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different gases, must bear simple ratios to one another. The val-
ues of these ratios, however, are subject to the above-mentioned
ambiguity in the selection of the equivalent weight. The ambi-
guity is, however, removed by putting all these ratios = 1, i.e. by
establishing the condition that equal volumes of different gases
shall contain an equal number of equivalents. Thus a definite
choice is made from the different possible values, and a definite
equivalent weight obtained for the gas, which is henceforth de-
noted as the molecular weight of the gas. At the same time the
number of equivalents in a quantity of the gas, which may be
found by dividing the total weight by the molecular weight, is
defined as the number of molecules contained in that quantity.
Hence, equal volumes of perfect gases at the same temperature
and pressure contain an equal number of molecules (Avogadro’s
law). The molecular weights of chemically homogeneous gases
are, therefore, directly proportional to the masses contained in
equal volumes, i.e. to the densities. The ratio of the densities is
equal to the ratio of the molecular weights.

§ 37. Putting the molecular weight of hydrogen = m0,
that of any other chemically homogeneous gas must be equal to
m0 multiplied by its specific density relative to hydrogen (§ 11).
The following table gives the specific densities relative to hydro-
gen, and the molecular weights of several gases:—

Specific Density. Molecular Weight.
Hydrogen 1.0 m0

Oxygen 16.0 16.0m0

Nitrogen 14.0 14.0m0

Water vapour 9.0 9.0m0

Ammonia 8.5 8.5m0
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Now, since water vapour consists of 1 part by weight of hy-
drogen and 8 parts by weight of oxygen, the molecule of water
vapour, 9m0, must consist of m0 parts by weight of hydrogen
and 8m0 parts by weight of oxygen—i.e., according to the above
table, of one molecule of hydrogen and half a molecule of oxygen.
In the same manner ammonia, according to analysis, consisting
of 1 part by weight of hydrogen and 42

3
parts by weight of nitro-

gen, its molecule 8.5m0 must necessarily contain 1.5m0 parts by
weight of hydrogen and 7m0 parts by weight of nitrogen—i.e.,
according to the table, 11

2
molecules of hydrogen and 1

2
mo-

lecule of nitrogen. Thus Avogadro’s law enables us to give in
quite definite numbers the molecular quantities of each constitu-
ent present in the molecule of any chemically homogeneous gas,
provided we know its density and its chemical composition.

§ 38. The smallest weight of a chemical element entering
into the molecules of its compounds is called an atom. Hence
half a molecule of hydrogen is called an atom of hydrogen, H;
similarly, half a molecule of oxygen an atom of oxygen, O; and
half a molecule of nitrogen an atom of nitrogen, N. The diatomic
molecules of these substances are represented by H2, O2, N2. An
atom of mercury, on the contrary, is equal to a whole molecule,
because in the molecules of its compounds no fractions of the
molecular weight of mercury vapour occur. It is usual to put the
atomic weight of hydrogen H = 1. Then its molecular weight
becomes H2 = m0 = 2, and the molecular weights of our table
become:—
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Molecular Weight.
Hydrogen 2 = H2

Oxygen 32 = O2

Nitrogen 28 = N2

Water vapour 18 = H2O
Ammonia 17 = H3N

§ 39. In general, then, the molecular weight of a chemic-
ally homogeneous gas is twice its density relative to hydrogen.
Conversely, the molecular weight, m, of a gas being known, its
specific density, and consequently the constant C in the charac-
teristic equation (5), can be calculated. Denoting all quantities
referring to hydrogen by the suffix 0, we have, at any temperat-
ure and pressure, for hydrogen,

p =
C0θ

v0
,

for any other gas at the same temperature and pressure,

p =
Cθ

v
,

∴ C : C0 =
1

v0
:

1

v
= m0 : m,

or

C =
m0C0

m
. (13)

Now m0 = 2, and C0 is to be calculated from the density of
hydrogen at 0◦ C. and atmospheric pressure (§ 11).
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Since

1

v0
= 0.00008988, p = 1013650, θ = 273,

∴ C =
m0C0

m
=
m0

m
· pv0
θ

=
2 · 1013650

m · 273 · 0.00008988
=

82600000

m
.

Putting, for shortness, 82600000 = R, the characteristic
equation of a chemically homogeneous perfect gas of molecular
weight m becomes

p =
R

m
· θ
v
, (14)

where R, being independent of the nature of the individual gas,
is generally called the absolute gas constant. The molecular
weight may be deduced directly from the characteristic equation
by the aid of the constant R, since

m =
R

C
. (15)

Since v =
V

M
, we have

V =
Rθ

p
· M
m
.

But
M

m
is the quantity defined above as the number of molecules

in the gas, and, therefore, if
M

m
= n,

V =
Rθ

p
· n,
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which means that at a given temperature and pressure the
volume of a quantity of gas depends only on the number of the
molecules present, and not at all on the nature of the gas.

§ 40. In a mixture of chemically homogeneous gases of mo-
lecular weights m1, m2, . . . the relation between the partial pres-
sures is, according to (9),

p1 : p2 : · · · = C1M1 : C2M2 : . . . .

But in (15) we have

C1 =
R

m1

; C2 =
R

m2

; . . . ,

∴ p1 : p2 : · · · = M1

m1

:
M2

m2

: · · · = n1 : n2 : . . . ,

i.e. the ratio of the partial pressures is also the ratio of the
number of molecules of each gas present. Equation (10) gives
for the total volume

V =
(C1M1 + C2M2 + . . . )θ

p

=
Rθ

p

(
M1

m1

+
M2

m2

+ . . .

)

=
Rθ

p
(n1 + n2 + . . . )

=
Rθ

p
n. (16)

The volume of the mixture is therefore determined by the total
number of the molecules present, just as in the case of a chem-
ically homogeneous gas.
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§ 41. It is evident that we cannot speak of the molecular
weight of a mixture. Its apparent molecular weight, however,
may be defined as the molecular weight which a chemically ho-
mogeneous gas would have if it contained in the same mass the
same number of molecules as the mixture. If we denote the
apparent molecular weight by m, we have

M1 +M2 + . . .

m
=
M1

m1

+
M2

m2

+ . . .

and

m =
M1 +M2 + . . .
M1

m1

+
M2

m2

+ . . .
.

The apparent molecular weight of air may thus be calculated.
Since

m1 = O2 = 32; m2 = N2 = 28; M1 : M2 = 0.3

we have

m =
0.3 + 1

0.3

32
+

1

28

= 28.8,

which is somewhat larger than the molecular weight of nitrogen.

§ 42. The characteristic equation of a perfect gas, whether
chemically homogeneous or not, gives, according to (16), the
total number of molecules, but yields no means of deciding
whether or not these molecules are all of the same kind. In
order to answer this question, other methods must be resorted
to, none of which, however, is practically applicable to all cases.
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A decision is often reached by an observation of the process
of diffusion through a porous or, better, a semipermeable mem-
brane. The individual gases of a mixture will separate from each
other by virtue of the differences in their velocities of diffusion,
which may even sink to zero in the case of semipermeable mem-
branes, and thus disclose the inhomogeneity of the substance.
The chemical constitution of a gas may often be inferred from
the manner in which it originated. It is by means of the expres-
sion for the entropy (§ 237) that we first arrive at a fundamental
definition for a chemically homogeneous gas.

§ 43. Should a gas or vapour not obey the laws of perfect
gases, or, in other words, should its specific density depend on
the temperature or the pressure, Avogadro’s definition of mo-
lecular weight is nevertheless applicable. The number of mo-
lecules in this case, instead of being a constant, will be depend-
ent upon the momentary physical condition of the substance.
We may, in such cases, either assume the number of molecules
to be variable, or refrain from applying Avogadro’s definition
of the number of molecules. In other words, the cause for the
deviation from the ideal state may be sought for either in the
chemical or physical conditions. The latter view preserves the
chemical nature of the gas. The molecules remain intact un-
der changes of temperature and pressure, but the characteristic
equation is more complicated than that of Boyle and Gay-Lussac
like that, for example, of van der Waals or of Clausius. The
other view differs essentially from this, in that it represents any
gas, not obeying the laws of perfect gases, as a mixture of vari-
ous kinds of molecules (in nitrogen peroxide N2O4 and NO2, in
phosphorus pentachloride PCl5, PCl3, and Cl2). The volume
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of these is supposed to have at every moment the exact value
theoretically required for the total number of molecules of the
mixture of these gases. The volume, however, does not vary
with temperature and pressure in the same way as that of a
perfect gas, because chemical reactions take place between the
different kinds of molecules, continuously altering the number
of each kind present, and thereby also the total number of mo-
lecules in the mixture. This hypothesis has proved fruitful in
cases of great differences of density—so-called abnormal vapour
densities—especially where, beyond a certain range of temperat-
ure or pressure, the specific density once more becomes constant.
When this is the case, the chemical reaction has been completed,
and for this reason the molecules henceforth remain unchanged.
Amylene hydrobromide, for instance, acts like a perfect gas be-
low 160◦ and above 360◦, but shows only half its former density
at the latter temperature. The doubling of the number of mo-
lecules corresponds to the equation

C5H11Br = C5H10 + HBr.

Mere insignificant deviations from the laws of perfect gases are
generally attributed to physical causes—as, e.g., in water va-
pour and carbon dioxide—and are regarded as the forerunners
of condensation. The separation of chemical from physical ac-
tions by a principle which would lead to a more perfect defin-
ition of molecular weight for variable vapour densities, cannot
be accomplished at the present time. The increase in the spe-
cific density which many vapours exhibit near their point of
condensation might just as well be attributed to such chemical
phenomena as the formation of double or multiple molecules. In
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fact, differences of opinion exist in a number of such cases. The
molecular weight of sulphur vapour below 800◦, for instance, is
generally assumed to be S6 = 192; but some assume a mixture
of molecules S8 = 256 and S2 = 64, and others still different
mixtures. In doubtful cases it is safest, in general, to leave this
question open, and to admit both chemical and physical changes
as causes for the deviations from the laws of perfect gases. This
much, however, may be affirmed, that for small densities the
physical influences will be of far less moment than the chemical
ones, for, according to experience, all gases approach the ideal
condition as their densities decrease (§ 21). This is an important
point, which we will make use of later.



CHAPTER III.

QUANTITY OF HEAT.

§ 44. If we plunge a piece of iron and a piece of lead, both of
equal weight and at the same temperature (100◦ C.), into two
precisely similar vessels containing equal quantities of water at
0◦ C., we find that, after thermal equilibrium has been estab-
lished in each case, the vessel containing the iron has increased
in temperature much more than that containing the lead. Con-
versely, a quantity of water at 100◦ is cooled to a much lower
temperature by a piece of iron at 0◦, than by an equal weight
of lead at the same temperature. This phenomenon leads to
a distinction between temperature and quantity of heat. As a
measure of the heat given out or received by a body, we take
the increase or decrease of temperature which some normal sub-
stance (e.g. water) undergoes when it alone is in contact with
the body, provided all other causes of change of temperature
(as compression, etc.) are excluded. The quantity of heat given
out by the body is assumed to be equal to that received by the
normal substance, and vice versâ. The experiment described
above proves, then, that a piece of iron in cooling through a
given interval of temperature gives out more heat than an equal
weight of lead (about four times as much), and conversely, that,
in order to bring about a certain increase of temperature, iron
requires a correspondingly larger supply of heat than lead.

§ 45. It was, in general, customary to take as the unit of
heat that quantity which must be added to 1 gr. of water to
raise its temperature from 0◦ C. to 1◦ C. (zero calorie). This
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is almost equal to the quantity of heat which will raise 1gr. of
water 1◦ C. at any temperature. The refinement of calorimetric
measurements has since made it necessary to take account of the
initial temperature of the water, and it is often found convenient
to define the calorie as that quantity of heat which will raise 1 gr.
of water of mean laboratory temperature (15◦ to 20◦) 1 degree of

the Centigrade scale. This laboratory calorie is about
1

1.006
of

a zero calorie. Finally, a mean calorie has been introduced,
namely, the hundredth part of the heat required to raise 1 gr.
of water from 0◦ C. to 100◦ C. The mean calorie is about equal
to the zero calorie. Besides these so-called small calories, there
are a corresponding number of large or kilogram calories, which
contain 1000 small calories.

§ 46. The ratio of Q, the quantity of heat each gram of a
substance receives, to ∆θ, the corresponding increase of temper-
ature, is called the mean specific heat, or mean heat capacity of
1 gr. of the substance between the initial and final temperatures
of the process—

Q

∆θ
= cm.

Hence, the mean heat capacity of water between 0◦ and 1◦ is
equal to one zero calorie.

Passing to infinitely small differences of temperature, the
specific heat of a substance, at the temperature θ, becomes

Q

dθ
= c.

This, in general, varies with temperature, but very slowly for
most substances. It is usually permissible to put the specific
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heat at a certain temperature equal to the mean specific heat of
an adjoining interval of moderate size.

§ 47. The heat capacity of solids and liquids is very nearly
independent of any variations of external pressure that may take
place during the process of heating. Hence the definition of the
heat capacity is not, usually, encumbered with a condition re-
garding pressure. The specific heat of gases, however, is influ-
enced considerably by the conditions of the heating process. In
this case the definition of specific heat would, therefore, be in-
complete without some statement as to the accompanying con-
ditions. Nevertheless, we speak of the specific heat of a gas,
without further specification, when we mean its specific heat at
constant (atmospheric) pressure, as this is the value most readily
determined.

§ 48. That the heat capacities of different substances should
be referred to unit mass is quite arbitrary. It arises from the
fact that quantities of matter can be most easily compared by
weighing them. Heat capacity might, quite as well, be referred
to unit volume. It is more rational to compare masses which
are proportional to the molecular and atomic weights of sub-
stances, for then certain regularities at once become manifest.
The corresponding heat capacities are obtained by multiplying
the specific heats (per unit mass) by the molecular or atomic
weights. The values thus obtained are known as the molecular
or atomic heats.

§ 49. The chemical elements, especially those of high atomic
weight, are found to have nearly the constant atomic heat of 6.4
(Dulong and Petit). It cannot be claimed that this law is rig-
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orously true, since the heat capacity depends on the molecular
constitution, as in the case of carbon, and on the state of aggreg-
ation, as in the case of mercury, as well as on the temperature.
The effect of temperature is especially marked in the elements,
carbon, boron, and silicon, which show the largest deviations
from Dulong and Petit’s law. The conclusion is, however, jus-
tified, that Dulong and Petit’s law is founded on some more
general law of nature, which has not yet been formulated.

§ 50. Similar regularities, as appear in the atomic heats of
elements, are also found in the molecular heats of compounds,
especially with compounds of similar chemical constitution. Ac-
cording to F. Neumann’s law, subsequently confirmed by Reg-
nault, compounds of similar constitution, when solid, have equal
molecular heats. Joule and Woestyn further extended this law
by showing that the molecular heat is merely the sum of the
atomic heats, or that in any combination every element preserves
its atomic heat, whether or not the latter be 6.4, according to
Dulong and Petit’s law. This relation also is only approximately
true.

§ 51. Since all calorimetric measurements, according to § 44,
extend only to quantities of heat imparted to bodies or given
out by them, they do not lead to any conclusion as to the total
amount of heat contained in a body of given temperature. It
would be absurd to define the heat contained in a body of given
temperature, density, etc., as the number of calories absorbed by
the body in its passage from some normal state into its present
state, for the quantity thus defined would assume different val-
ues according to the way in which the change was effected. A gas
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at 0◦ and atmospheric pressure can be brought to a state where
its temperature is 100◦ and its pressure 10 atmospheres, either
by heating to 100◦ under constant pressure, and then compress-
ing at constant temperature; or by compressing isothermally to
10 atmospheres, and then heating isopiestically to 100◦; or, fi-
nally, by compressing and heating simultaneously or alternately
in a variety of ways. The total number of calories absorbed
would in each case be different (§ 77). It is seen, then, that it
is useless to speak of a certain quantity of heat which must be
applied to a body in a given state to bring it to some other state.
If the “total heat contained in a body” is to be expressed numer-
ically, as is done in the kinetic theory of heat, where the heat of
a body is defined as the total energy of its internal motions, it
must not be interpreted as the sum-total of the quantities of heat
applied to the body. As we shall make no use of this quantity
in our present work, no definition of it need be attempted.

§ 52. In contrast to the above representation of the facts,
the older (Carnot’s) theory of heat, which started from the hy-
pothesis that heat is an indestructible substance, necessarily
reached the conclusion that the “heat contained in a body” de-
pends solely on the number of calories absorbed or given out by
it. The heating of a body by other means than direct applica-
tion of heat, by compression or by friction for instance, accord-
ing to that theory produces no change in the “total heat.” To
explain the rise of temperature which takes place notwithstand-
ing, it was necessary to make the assumption that compression
and friction so diminish the body’s heat capacity, that the same
amount of heat now produces a higher temperature, just as, for
example, a moist sponge appears more moist if compressed, al-
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though the quantity of liquid in the sponge remains the same.
In the meantime, Rumford and Davy proved by direct experi-
ment that bodies, in which any amount of heat can be generated
by an adequate expenditure of work, do not in the least alter
their heat capacities with friction. Regnault, likewise, showed,
by accurate measurements, that the heat capacity of gases is
independent of or only very slightly dependent on volume; that
it cannot, therefore, diminish, in consequence of compression,
as much as Carnot’s theory would require. Finally, W. Thom-
son and Joule have demonstrated by careful experiments that a
gas, when expanding without overcoming external pressure, un-
dergoes no change of temperature, or an exceedingly small one
(cf. § 70), so that the cooling of gases generally observed when
they expand is not due to the increase of volume per se, but to
the work done in the expansion. Each one of these experimental
results would by itself be sufficient to disprove the hypothesis of
the indestructibility of heat, and to overthrow the older theory.

§ 53. While, in general, the heat capacity varies continu-
ously with temperature, every substance possesses, under cer-
tain external pressures, so-called singular values of temperat-
ure, for which the heat capacity, together with other properties,
is discontinuous. At such temperatures the heat absorbed no
longer affects the entire body, but only one of the parts into
which it has split; and it no longer serves to increase the tem-
perature, but simply to alter the state of aggregation, i.e. to
melt, evaporate, or sublime. Only when the entire substance
has again become homogeneous will the heat imparted produce
a rise in temperature, and then the heat capacity becomes once
more capable of definition. The quantity of heat necessary to
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change 1 gram of a substance from one state of aggregation to
another is called the latent heat, in particular, the heat of fu-
sion, of vaporization, or of sublimation. The same amount of
heat is set free when the substance returns to its former state of
aggregation. Latent heat, as in the case of specific heat, is best
referred, not to unit mass, but to molecular or atomic weight.
Its amount largely depends on the external conditions under
which the process is carried out (§ 47), constant pressure being
the most important condition.

§ 54. Like the changes of the state of aggregation, all pro-
cesses involving mixture, or solution, and all chemical reac-
tions are accompanied by an evolution of heat of greater or less
amount, which varies according to the external conditions. This
we shall henceforth designate as the heat effect (Wärmetonung)
of the process under consideration, in particular as the heat of
mixture, of solution, of combination, of dissociation, etc. It is
reckoned positive when heat is set free or developed, i.e. given
out by the body (exothermal processes); negative, when heat is
absorbed, or rendered latent, i.e. taken up by the body (endo-
thermal processes).



PART II.

The First Fundamental Principle of
Thermodynamics.

CHAPTER I.

GENERAL EXPOSITION.

§ 55. The first law of thermodynamics is nothing more than
the principle of the conservation of energy applied to phenomena
involving the production or absorption of heat. Two ways lead
to a deductive proof of this principle. We may take for granted
the correctness of the mechanical view of nature, and assume
that all changes in nature can be reduced to motions of material
points between which there act forces which have a potential.
Then the principle of energy is simply the well-known mechan-
ical theorem of kinetic energy, generalized to include all natural
processes. Or we may, as is done in this work, leave open the
question concerning the possibility of reducing all natural pro-
cesses to those of motion, and start from the fact which has been
tested by centuries of human experience, and repeatedly verified,
viz. that it is in no way possible, either by mechanical, thermal,
chemical, or other devices, to obtain perpetual motion, i.e. it is
impossible to construct an engine which will work in a cycle and
produce continuous work, or kinetic energy, from nothing. We
shall not attempt to show how this single fact of experience,
quite independent of the mechanical view of nature, serves to
prove the principle of energy in its generality, mainly for the
reason that the validity of the energy principle is nowadays no
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longer disputed. It will be different, however, in the case of the
second law of thermodynamics, the proof of which, at the present
stage of the development of our subject, cannot be too carefully
presented. The general validity of this law is still contested from
time to time, and its significance variously interpreted, even by
the adherents of the principle.

§ 56. The energy of a body, or system of bodies, is a mag-
nitude depending on the momentary condition of the system.
In order to arrive at a definite numerical expression for the en-
ergy of the system in a given state, it is necessary to fix upon a
certain normal arbitrarily selected state (e.g. 0◦ C. and atmo-
spheric pressure). The energy of the system in a given state,
referred to the arbitrarily selected normal state, is then equal to
the algebraic sum of the mechanical equivalents of all the effects
produced outside the system when it passes in any way from the
given to the normal state. The energy of a system is, therefore,
sometimes briefly denoted as the faculty to produce external ef-
fects. Whether or not the energy of a system assumes different
values according as the transition from the given to the nor-
mal state is accomplished in different ways is not implied in the
above definition. It will be necessary, however, for the sake of
completeness, to explain the term “mechanical equivalent of an
external effect.”

§ 57. Should the external effect be mechanical in nature—
should it consist, e.g., in lifting a weight, overcoming atmo-
spheric pressure, or producing kinetic energy—then its mech-
anical equivalent is simply equal to the mechanical work done
by the system on the external body (weight, atmosphere, pro-
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jectile). It is positive if the displacement take place in the dir-
ection of the force exercised by the system—when the weight is
lifted, the atmosphere pushed back, the projectile discharged,—
negative in the opposite sense.

But if the external effect be thermal in nature—if it consist,
e.g., in heating surrounding bodies (the atmosphere, a calori-
metric liquid, etc.)—then its mechanical equivalent is equal to
the number of calories which will produce the same rise of tem-
perature in the surrounding bodies multiplied by an absolute
constant, which depends only on the units of heat and mech-
anical work, the so-called mechanical equivalent of heat. This
proposition, which appears here only as a definition, receives
through the principle of the conservation of energy a physical
meaning, which may be put to experimental test.

§ 58. The Principle of the Conservation of Energy
asserts, generally and exclusively, that the energy of a system
in a given state, referred to a fixed normal state, has a quite
definite value; in other words—substituting the definition given
in § 56—that the algebraic sum of the mechanical equivalents
of the external effects produced outside the system, when it
passes from the given to the normal state, is independent of the
manner of the transformation. On passing into the normal state
the system thus produces a definite total of effects, as measured
in mechanical units, and it is this sum—the “work-value” of the
external effects—that represents the energy of the system in the
given state.

§ 59. The validity of the principle of the conservation of en-
ergy may be experimentally verified by transferring a system in
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various ways from a given state to a certain other state, which
may here be designated as the normal state, and measuring the
mechanical equivalents of all external effects in each case. Spe-
cial care must be taken, however, that the initial state of the
system is the same each time, and that none of the external
effects is overlooked or taken into account more than once.

§ 60. As a first application we shall discuss Joule’s famous
experiments, in which the external effects produced by weights
falling from a certain height were compared, first, when perform-
ing only mechanical work (e.g. lifting a load), and second, when
by suitable contrivances generating heat by friction. The initial
and final position of the weights may be taken as the two states
of the system, the work or heat produced, as the external effects.
The first case, where the weights produce only mechanical work,
is simple, and requires no experiment. Its mechanical equivalent
is the product of the sum of the weights, and the height through
which they fall. The second case requires accurate measurement
of the increase of temperature, which the surrounding substances
(water, mercury) undergo in consequence of the friction, as well
as of their heat capacities, for the determination of the number
of calories which will produce in them the same rise of temperat-
ure. It is, of course, entirely immaterial what our views may be
with regard to the details of the frictional generation of heat, or
with regard to the ultimate form of the heat thus generated. The
only point of importance is that the state produced in the liquid
by friction is identical with a state produced by the absorption
of a definite number of calories.

Joule, by equating the mechanical work, corresponding to
the fall of the weights, to the mechanical equivalent of the heat
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produced by friction, showed that the mechanical equivalent of a
gram-calorie is, under all circumstances, equal to the work done
in lifting a weight of a gram through a height of 423.55 meters.
That all his experiments with different weights, different calor-
imetric substances, and different temperatures, led to the same
value, goes to prove the correctness of the principle of the con-
servation of energy.

§ 61. In order to determine the mechanical equivalent of
heat in absolute units, we must bear in mind that Joule’s result
refers to laboratory calories (§ 45), and the readings of a mercury
thermometer. At the temperature of the laboratory, 1◦ of the

mercury thermometer represents about
1

1.007
of 1◦ of the gas

thermometer. A calorie referred to the gas thermometer has,
therefore, a mechanical equivalent of 423.55× 1.007 = 427.

The acceleration of gravity must also be considered, since
raising a gram to a certain height represents, in general, different
amounts of work in different latitudes. The absolute value of the
work done is obtained by multiplying the weight, i.e. the product
of the mass and the acceleration of gravity, by the height of fall.
The following table gives the mechanical equivalent of heat in
the different calories:—

Unit of heat referred
to gas thermometer.

Corresponding height in
meters to which 1 gr.

must be raised in places
of mean latitude.

Absolute value of
the mechanical

equivalent (C.G.S.
system, erg).

Laboratory caloric 427 419× 105

Zero calorie 430 422× 105

The numbers of the last column are derived from those of
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the preceding one by multiplying by 98, 100, to reduce grams to
dynes, and meters to centimeters. Joule’s results have been sub-
stantially confirmed by recent careful measurements by Rowland
and others.

§ 62. The determination of the mechanical equivalent of
heat enables us to express quantities of heat in ergs directly,
instead of calories. The advantage of this is, that a quantity
of heat is not only proportional to, but directly equal to its
mechanical equivalent, whereby the mathematical expression for
the energy is greatly simplified. This unit of heat will be used in
all subsequent equations. The return to calories is, at any time,
readily accomplished by dividing by 419× 105.

§ 63. Some further propositions immediately follow from
the above exposition of the principle of energy. The energy, as
stated, depends on the momentary condition of the system. To
find the change of energy, U1−U2, accompanying the transition
of the system from a state 1 to a state 2, we should, according
to the definition of the energy in § 58, have to measure U1 as
well as U2 by the mechanical equivalent of the external effects
produced in passing from the given states to the normal state.
But, supposing we so arrange matters that the system passes
from state 1, through state 2, into the normal state, it is evident
then that U1 − U2 is simply the mechanical equivalent of the
external effects produced in passing from 1 to 2. The decrease
of the energy of a system subjected to any change is, then, the
mechanical equivalent of the external effects resulting from that
change; or, in other words, the increase of the energy of a system
which undergoes any change, is equal to the mechanical equival-
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ent of the heat absorbed and the work expended in producing
the change:—

U2 − U1 = Q+W. (17)

Q is the mechanical equivalent of the heat absorbed by the sys-
tem, e.g. by conduction, and W is the amount of work expended
on the system. W is positive if the change takes place in the
direction of the external forces. The sum Q+W represents the
mechanical equivalent of all the thermal and mechanical oper-
ations of the surrounding bodies on the system. We shall use
Q and W always in this sense.

The value of Q + W is independent of the manner of the
transition from 1 to 2, and evidently also of the selection of
the normal state. When differences of energy of one and the
same system are considered, it is, therefore, not even necessary
to fix upon a normal state. In the expression for the energy of
the system there remains then an arbitrary additive constant
undetermined.

§ 64. The difference U2 − U1 may also be regarded as the
energy of the system in state 2, referred to state 1 as the normal
state. For, if the latter be thus selected, then U1 = 0, since it
takes no energy to change the system from 1 to the normal state,
and U2 − U1 = U2. The normal state is, therefore, sometimes
called the state of zero energy.

§ 65. States 1 and 2 may be identical, in which case the
system changing from 1 to 2 passes through a so-called cycle of
operations. In this case,

U2 = U1 and Q+W = 0. (18)
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The mechanical equivalent of the external effects is zero, or the
external heat effect is equal in magnitude and opposite in sign
to the external work. This proposition shows the impracticabil-
ity of perpetual motion, which necessarily presupposes engines
working in complete cycles.

§ 66. If no external effects (Q = 0, W = 0) be produced
by a change of state of the system, its energy remains constant
(conservation of the energy). The quantities, on which the state
of the system depends, may undergo considerable changes in this
case, but they must obey the condition U = const..

A system which changes without being acted on by external
agents is called a perfect system. Strictly speaking, no perfect
system can be found in nature, since there is constant interaction
between all material bodies of the universe. It is, however, of
importance to observe that by an adequate choice of the system
which is to undergo the contemplated change, we have it in
our power to make the external effect as small as we please,
in comparison with the changes of energy of portions of the
system itself. Any particular external effect may be eliminated
by making the body which produces this effect, as well as the
recipient, a part of the system under consideration. In the case
of a gas which is being compressed by a weight sinking to a lower
level, if the gas by itself be the system considered, the external
effect on it is equal to the work done by the weight. The energy
of the system accordingly increases. If, however, the weight
and the earth be considered parts of the system, all external
effects are eliminated, and the energy of this system remains
constant. The expression for the energy now contains a new
term representing the potential energy of the weight. The loss
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of the potential energy of the weight is exactly compensated by
the gain of the internal energy of the gas. All other cases admit
of similar treatment.



CHAPTER II.

APPLICATIONS TO HOMOGENEOUS SYSTEMS.

§ 67. We shall now apply the first law of thermodynamics as
expressed in equation (17),

U2 − U1 = Q+W,

to a homogeneous substance, whose state is determined, be-
sides by its chemical nature and mass M , by two variables, the
temperature θ and the volume V , for instance. The term ho-
mogeneous is used here in the sense of physically homogeneous,
and is applied to any system which appears of completely uni-
form structure throughout. The substance may be chemically
homogeneous, i.e. it may consist entirely of the same kind of
molecules, or chemical transformations may take place at some
stage of the process, as, for example, in the case of a vapour,
which partially dissociates on being heated. The homogeneous
state must, however, be a single valued function of the temper-
ature and the volume. As long as the system is at rest, the total
energy consists of the so-called internal energy U , which de-
pends only on the internal state of the substance as determined
by its density and temperature, and on its mass, to which it is
evidently proportional. In other cases the total energy contains,
besides the internal energy U , another term, namely, the kinetic
energy, which is known from the principles of mechanics.

In order to determine the functional relation between U , θ,
and V , the state of the system must be changed, and the external
effects of this change calculated. Equation (17) then gives the
corresponding change of energy.
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§ 68. If a gas, initially at rest and at uniform temperature,
be allowed to suddenly expand by the opening of a stop-cock,
which makes communication with a previously exhausted ves-
sel, a number of intricate mechanical and thermal changes will at
first take place. The portion of the gas flowing into the vacuum
is thrown into violent motion, then heated by impact against the
sides of the vessel and by compression of the particles crowding
behind, while the portion remaining in the first vessel is cooled
down by expansion, etc. Assuming the walls of the vessels to
be absolutely rigid and non-conducting, and denoting by 2 any
particular state after communication between the vessels has
been established, then, according to equation (17), the total en-
ergy of the gas in state 2 is precisely equal to that in state 1,
for neither thermal nor mechanical forces have acted on the gas
from without. The reaction of the walls does not perform any
work. The energy in state 2 is, in general, composed of many
parts, viz. the kinetic and internal energies of the gas particles,
each one of which, if taken sufficiently small, may be considered
as homogeneous and uniform in temperature and density. If we
wait until complete rest and thermal equilibrium have been re-
established, and denote this state by 2, then in 2, as in 1, the
total energy consists only of the internal energy U , and we have
U2 = U1. But the variables θ and V , on which U depends, have
passed from θ1, V1 to θ2, V2, where V2 > V1. By measuring the
temperatures and the volumes, the relation between the tem-
perature and the volume in processes where the internal energy
remains constant may be established.

§ 69. Joule performed such an experiment as described, and
found that for perfect gases θ2 = θ1. He put the two commu-
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nicating vessels, one filled with air at high pressure, the other
exhausted, into a common water-bath at the same temperature,
and found that, after the air had expanded and equilibrium had
been established, the change of temperature of the water-bath
was inappreciable. It immediately follows that, if the walls of the
vessels were non-conducting, the final temperature of the total
mass of the gas would be equal to the initial temperature; for
otherwise the change in temperature would have communicated
itself to the water-bath in the above experiment.

Hence, if the internal energy of a nearly perfect gas remains
unchanged after a considerable change of volume, then its tem-
perature also remains almost constant. In other words, the in-
ternal energy of a perfect gas depends only on the temperature,
and not on the volume.

§ 70. For a conclusive proof of this important deduction,
much more accurate measurements are required. In Joule’s ex-
periment described above, the heat capacity of the gas is so
small compared with that of the vessel and the water-bath, that
a considerable change of temperature in the gas would have been
necessary to produce an appreciable change of temperature in
the water. More reliable results are obtained by a modification
of the above method devised by Sir William Thomson (Lord
Kelvin), and used by him, along with Joule, for accurate meas-
urements. Here the outflow of the gas is artificially retarded, so
that the gas passes immediately into its second state of equi-
librium. The temperature θ2 is then directly measured in the
stream of outflowing gas. No limited quantity of gas rushes tu-
multuously into a vacuum, but a gas is slowly transferred in
a steady flow from a place of high pressure, p1, to one of low
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pressure, p2 (the atmosphere), by forcing it through a boxwood
tube stopped at one part of its length by a porous plug of cot-
ton wool or filaments of silk. The results of the experiment show
that when the flow has become steady there is, for air, a very
small change of temperature, and, for hydrogen, a still smaller,
hardly appreciable change. Hence the conclusion appears justi-
fied, that, for a perfect gas, the change of temperature vanishes
entirely.

This leads to an inference with regard to the internal energy
of a perfect gas. When, after the steady state of the process has
been established, a certain mass of the gas has been completely
pushed through the plug, it has been operated upon by external
agents during its change from the volume, V1, at high pressure,
to the larger volume, V2, at atmospheric pressure. The mechan-
ical equivalent of these operations, Q + W , is to be calculated
from the external changes. The state of the porous plug re-
mains the same throughout; hence the processes that take place
in it may be neglected. No change of temperature occurs out-
side the tube, as the material of which it is made is practically
non-conducting; hence Q = 0. The mechanical work done by a
piston in pressing the gas through the plug at the constant pres-
sure p1 is evidently p1V1, and this for a perfect gas at constant
temperature is, according to Boyle’s law, equal to the work p2V2,
which is gained by the escaping gas pushing a second piston at
pressure p2 through a volume V2. Hence the sum of the external
work W is also zero, and therefore, according to equation (17),
U2 = U1. As the experimental results showed the temperature to
be practically unchanged while the volume increased very con-
siderably, the internal energy of a perfect gas can depend only
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on the temperature and not on the volume, i.e.,

(
∂U

∂V

)

θ

= 0. (19)

For nearly perfect gases, as hydrogen, air, etc., the actual
small change of temperature observed shows how far the internal
energy depends on the volume. It must, however, be borne in
mind that for such gases the external work,

W = p1V1 − p2V2,

does not vanish; hence the internal energy does not remain con-
stant. For further discussion, see § 158.

§ 71. Special theoretical importance must be attached
to those thermodynamical processes which progress infinitely
slowly, and which, therefore, consist of a succession of states of
equilibrium. Strictly speaking, this expression is vague, since
a process presupposes changes, and, therefore, disturbances of
equilibrium. But where the time taken is immaterial, and the
result of the process alone of consequence, these disturbances
may be made as small as we please, certainly very small in com-
parison with the other quantities which characterize the state of
the system under observation. Thus, a gas may be compressed
very slowly to any fraction of its original volume, by making
the external pressure, at each moment, just a trifle greater
than the internal pressure of the gas. Wherever external pres-
sure enters—as, for instance, in the calculation of the work of
compression—a very small error will then be committed, if the
pressure of the gas be substituted for the external pressure. On
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passing to the limit, even that error vanishes. In other words,
the result obtained becomes rigorously exact for infinitely slow
compression.

This holds for compression at constant as well as at variable
pressure. The latter may be given the required value at each
moment by the addition or removal of small weights. This may
be done either by hand (by pushing weights to one side), or by
means of some automatic device which acts merely as a release,
and therefore does not contribute towards the work done.

§ 72. The conduction of heat to and from the system may be
treated in the same way. When it is not a question of time, but
only of the amount of heat received or given out by the system,
it is sufficient, according as heat is to be added to or taken
from the system, to connect it with a heat-reservoir of slightly
higher or lower temperature than that of the system. This small
difference serves, merely, to determine the direction of the flow
of the heat, while its magnitude is negligible compared with
the changes of the system, which result from the process. We,
therefore, speak of the conduction of heat between bodies of
equal temperature, just as we speak of the compression of a gas
by an external pressure equal to that of the gas. This is merely
anticipating the result of passing to the limit from a small finite
difference to an infinitesimal difference of temperature between
the two bodies.

This applies not only to strictly isothermal processes, but
also to those of varying temperature. One heat-reservoir of con-
stant temperature will not suffice for carrying out the latter
processes. These will require either an auxiliary body, the tem-
perature of which may be arbitrarily changed, e.g. a gas that can
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be heated or cooled at pleasure by compression or expansion; or
a set of constant-temperature reservoirs, each of different tem-
perature. In the latter case, at each stage of the process we apply
that particular heat-reservoir whose temperature lies nearest to
that of the system at that moment.

§ 73. The value of this method of viewing the process lies
in the fact that we may imagine each infinitely slow process to
be carried out also in the opposite direction. If a process consist
of a succession of states of equilibrium with the exception of
very small changes, then evidently a suitable change, quite as
small, is sufficient to reverse the process. This small change will
vanish when we pass over to the limiting case of the infinitely
slow process, for a definite result always contains a quite definite
error, and if this error be smaller than any quantity, however
small, it must be zero.

§ 74. We pass now to the application of the first law to a pro-
cess of the kind indicated, and, therefore, reversible in its various
parts. Taking the volume V (abscissa) and the pressure p (ordin-
ate) as the independent variables, we may graphically illustrate
our process by plotting its successive states of equilibrium in
the form of a curve in the plane of the co-ordinates. Each point
in this plane corresponds to a certain state of our system, the
chemical nature and mass of which are supposed to be given,
and each curve corresponds to a series of continuous changes of
state. Let the curve a from 1 to 2 represent a reversible process
which takes the substance from a state 1 to a state 2 (Fig. 2).
Along α, according to equation (17), the increase of the energy
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is
U2 − U1 = W +Q,

where W is the mechanical work expended on the substance,
and Q the total heat absorbed by it.

§ 75. The value of W can be readily determined. W is made
up of the elementary quantities of work done on the system
during the infinitesimal changes corresponding to the elements
of arc of the curve α. The external pressure is at any moment
equal to that of the substance, since the process is supposed to
be reversible. Consequently, by the laws of hydrodynamics, the
work done by the external forces in the infinitely small change
is equal to the product of the pressure p, and the decrease of
the volume, −dV , no matter what the geometrical form of the
surface of the body may be. Hence the external work done
during the whole process is

W = −
∫ 2

1

p dV, (20)

in which the integration extends from 1 to 2 along the curve α.
If p be positive, as in the case of gases, and V2 > V1 as in Fig. 2,
W is negative.

In order to perform the integration, the curve α, i.e. the
relation between p and V , must be known. As long as only
the points 1 and 2 are given, the integral has no definite value.
In fact, it assumes an entirely different value along a different
curve, β, joining 1 and 2. Therefore p dV is not a perfect dif-
ferential. Mathematically this depends on the fact that p is in
general not only a function of V , but also of another variable, the
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V

p

1

2

α

β

Fig. 2.

temperature θ, which also changes along the path of integration.
As long as α is not given, no statement can be made with regard
to the relation between θ and V , and the integration cannot be
performed.

The external work, W , is evidently represented by the area
(taken negative) of the plane figure bounded by the curve α,
the ordinates at 1 and 2, and the axis of abscissæ. This, too,
shows that W depends on the path of the curve α. Only for
infinitesimal changes, i.e. when 1 and 2 are infinitely near one
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another and α shrinks to a curve element, is W determined by
the initial and final points of the curve alone.

§ 76. The second measurable quantity is Q, the heat ab-
sorbed. It may be determined by calorimetric methods in cal-
ories, and then expressed in mechanical units by multiplying by
the mechanical equivalent of heat. We shall now consider the
theoretical determination of Q. It is, like W , the algebraical
sum of the infinitely small quantities of heat added to the body
during the elementary processes corresponding to the elements
of the curve α. Such an increment of heat cannot, however, be
immediately calculated, from the position of the curve element
in the co-ordinate plane, in a manner similar to that of the in-
crement of work. To establish an analogy between the two, one
might, in imitation of the expression −p dV , put the increment
of heat = C dθ, where dθ is the increment of temperature, and
C the heat capacity, which is usually a finite quantity. But
C has not, in general, a definite value. It does not depend, as
the factor p in the expression for the increment of work, alone
on the momentary state of the substance, i.e. on the position of
the point of the curve considered, but also on the direction of
the curve element. In isothermal changes C is evidently = ±∞,
because dθ = 0, and the heat added or withdrawn is a finite
quantity. In adiabatic changes C = 0, for here the temperature
may change in any way, while no heat is added or withdrawn.
For a given point, C may, therefore, in contradistinction to p,
assume all values between +∞ and −∞. (Cf. § 47.) Hence
the analogy is incomplete in one essential, and does not, in the
general case, simplify the problem in hand. We shall also find
that the breaking up of the heat absorbed into the two factors
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θ and dΦ (§ 120), is permissible only in some very special cases.

§ 77. Although the value of Q cannot, in general, be directly
determined, equation (17) enables us to draw some important
inferences regarding it. Substituting the value of W from equa-
tion (20) in equation (17), we obtain

Q = U2 − U1 +

∫ 2

1

p dV, (21)

which shows that the value of Q depends not only on the po-
sition of the points 1 and 2, but also on the connecting path
(α or β). Carnot’s theory of heat cannot be reconciled with this
proposition, as we have shown at length in § 51 and 52.

§ 78. The complete evaluation of Q is possible in the case
where the substance returns to its initial state, having gone
through a cycle of operations. This might be done by first bring-
ing the system from 1 to 2 along α, then back from 2 to 1 along β.
Then, as in all cycles (§ 65),

Q = −W.

The external work is

W = −
∫ 1

1

p dV,

the integral to be taken along the closed curve 1α2β1. W evid-
ently represents the area bounded by the curve, and is positive
if the process follows the direction of the arrow in Fig. 2.

§ 79. We shall now consider the special case where the
curve α, which characterizes the change of state, shrinks into
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an element, so that the points 1 and 2 lie infinitely near one an-
other. W here becomes the increment of work, −p dV , and the
change of the internal energy is dU . Hence, according to (21),
the heat absorbed assumes the value:∗

Q = dU + p dV.

Per unit mass, this equation becomes

q = du+ p dv, (22)

where the small letters denote the corresponding capitals divided
by M . In subsequent calculations it will often be advisable to
use θ as an independent variable, either in conjunction with p,
or v. We shall, in each case, select as independent variables those
which are most conducive to a simplification of the problem
in hand. The meaning of the differentiation will be indicated
whenever a misunderstanding is possible.

We shall now apply our last equation (22) to the most im-
portant reversible processes.

§ 80. It has been repeatedly mentioned that the specific heat
of a substance may be defined in very different ways according to
the manner in which the heating is carried out. But, according
to § 46 and equation (22), we have, for any heating process,

c =
q

dθ
=
du

dθ
+ p

dv

dθ
. (23)

∗It is usual to follow the example of Clausius, and denote this quantity
by dQ, to indicate that it is infinitely small. This notation, however, has
frequently given rise to misunderstanding, for dQ has been repeatedly re-
garded as the differential of a known finite quantity Q. We therefore adhere
to the notation given above. Other authors use d′Q, in order to obviate the
aforesaid misunderstanding.
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In order to give a definite meaning to the differential coeffi-
cients, some arbitrary condition is required, which will prescribe
the direction of the change. A single condition is sufficient, since
the state of the substance depends on two variables only.

§ 81. Heating at Constant Volume.—Here dv = 0, c =
cv, the specific heat at constant volume. Hence, according to
equation (23),

cv =

(
∂u

∂θ

)

v

, (24)

or

cv =

(
∂u

∂p

)

v

(
∂p

∂θ

)

v

. (25)

§ 82. Heating under Constant Pressure.—Here dp = 0,
c = cp, the specific heat at constant pressure. According to
equation (23),

cp =

(
∂u

∂θ

)

p

+ p

(
∂v

∂θ

)

p

, (26)

or

cp =

[(
∂u

∂v

)

p

+ p

](
∂v

∂θ

)

p

. (27)

By the substitution of
(
∂u

∂θ

)

p

=

(
∂u

∂θ

)

v

+

(
∂u

∂v

)

θ

(
∂v

∂θ

)

p
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in (26), cp may be written in the form

cp =

(
∂u

∂θ

)

v

+

[(
∂u

∂v

)

θ

+ p

](
∂v

∂θ

)

p

,

or, by (24),

cp = cv +

[(
∂u

∂v

)

θ

+ p

](
∂v

∂θ

)

p

. (28)

§ 83. By comparing (25) and (27) and eliminating u, we are
led to a direct experimental test of the theory.

By (25), (
∂u

∂p

)

v

= cv

(
∂θ

∂p

)

v

,

and by (27), (
∂u

∂v

)

p

= cp

(
∂θ

∂v

)

p

− p;

whence, differentiating the former equation with respect to v,
keeping p constant, and the latter with respect to p, keeping
v constant, and equating, we have

∂

∂v

(
cv
∂θ

∂p

)
=

∂

∂p

(
cp
∂θ

∂v
− p
)
,

or

(cp − cv)
∂2θ

∂p ∂v
+
∂cp
∂p
· ∂θ
∂v
− ∂cv
∂v
· ∂θ
∂p

= 1. (29)

This equation contains only quantities which may be experi-
mentally determined, and therefore furnishes a means for testing



applications to homogeneous systems. 68

the first law of thermodynamics by observations on any homo-
geneous substance.

§ 84. Perfect Gases.—The above equations undergo con-
siderable simplifications for perfect gases. We have, from (14),

p =
R

m
· θ
v
, (30)

where R = 826× 105 and m is the (real or apparent) molecular
weight. Hence

θ =
m

R
pv,

and equation (29) becomes

cp − cv + p
∂cp
∂p
− v ∂cv

∂v
=
R

m
.

Assuming that only the laws of Boyle, Gay-Lussac, and Avogadro
hold, no further conclusions can be drawn from the first law of
thermodynamics with regard to perfect gases.

§ 85. We shall now make use of the additional property of
perfect gases, established by Thomson and Joule (§ 70), that the
internal energy of a perfect gas depends only on the temperature,
and not on the volume, and that hence per unit mass, according
to (19), (

∂u

∂v

)

θ

= 0. (31)

The general equation,

du =

(
∂u

∂θ

)

v

dθ +

(
∂u

∂v

)

θ

dv,
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then becomes, for perfect gases,

du =

(
∂u

∂θ

)

v

dθ,

and, according to (24),

du = cv · dθ. (32)

It follows from (28) that

cp = cv + p

(
∂v

∂θ

)

p

,

or, considering the relation (30),

cp = cv +
R

m
;

i.e. there is a constant difference between the specific heat at
constant pressure and the specific heat at constant volume. Re-
ferring the heat capacity to the molecular weight m, instead of
to unit mass, we have

mcp −mcv = R. (33)

The difference is, therefore, independent even of the nature of
the gas.

§ 86. Only the specific heat at constant pressure, cp, is cap-
able of direct experimental determination, because a quantity
of gas enclosed in a vessel of constant volume has far too small
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a heat capacity to produce sufficient thermal effects on the sur-
rounding bodies. Since cv, according to (24), like u, depends on
the temperature only, and not on the volume, the same follows
for cp, according to (33). This conclusion was first confirmed by
Regnault’s experiments. He found cp constant within a consid-
erable range of temperature. By (33), cv is constant within the
same range.

If the molecular heats be expressed in calories, R must be
divided by Joule’s equivalent J . The difference between the
molecular heats at constant pressure and at constant volume is
then

mcp −mcv =
R

J
=

826 · 105

419 · 105
= 1.971. (34)

§ 87. The following table contains the specific heats and mo-
lecular heats of several gases at constant pressure, measured by
direct experiment; also the molecular heats at constant volume

found by subtracting 1.97, and also the ratio
cp
cv

= γ:—

cp m mcp mcv
cp
cv

= γ

Specific heat
at const.
pressure.

Molecular
weight.

Molecular
heat at
const.

pressure.

Molecular
heat at
const.

volume.

Hydrogen 3.410 2.0 6.82 4.85 1.41
Oxygen 0.2175 31.9 6.94 4.97 1.40
Nitrogen 0.2438 28.0 6.83 4.86 1.41
Air 0.2375 28.8 6.84 4.87 1.41

The specific heat generally increases slowly on considerable
increase of temperature. Within the range of temperature in
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which the specific heat is constant, equation (32) can be integ-
rated, giving

u = cvθ + const. (35)

The constant of integration depends on the selection of the zero
point of energy. For perfect gases, we consider cp and cv as
constants throughout, hence the last equation holds good in
general.

§ 88. Adiabatic Process.—The characteristic feature of
the adiabatic process is that q = 0, and, according to equa-
tion (22),

0 = du+ p dv.

Assuming, again, a perfect gas, and substituting the values
of du from (32) and of p from (30), we have

0 = cv dθ +
R

m
· θ
v
dv, (36)

or, on integrating,

cv log θ +
R

m
log v = const.

Replacing
R

m
according to (33) by cp − cv, and dividing by cv,

we get
log θ + (γ − 1) log v = const. (37)

(i.e. during adiabatic expansion the temperature decreases). Re-
membering that according to the characteristic equation(30)

log p+ log v − log θ = const.,
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we have, on eliminating v,

−γ log θ + (γ − 1) log p = const.

(i.e. during adiabatic compression the temperature rises); or, on
eliminating θ,

log p+ γ log v = const.

The values of the constants of integration are given by the initial
state of the process.

If we compare our last equation in the form

pvγ = const. (38)

with Boyle’s law pv = const., it is seen that during adiabatic
compression the volume decreases more slowly for an increase
of pressure than during isothermal compression, because dur-
ing adiabatic compression the temperature rises. The adiabatic
curves in the (p, v)-plane (§ 22) are, therefore, steeper than the
hyperbolic isotherms.

§ 89. Adiabatic processes may be used in various ways for
the determination of γ, the ratio of the specific heats. The agree-
ment of the results with the value calculated from the mechan-
ical equivalent of heat forms an important confirmation of the
theory.

Thus, the measurement of the velocity of sound in a gas may
be used for determining the value of γ. It is proved in hydro-

dynamics that the velocity of sound in a fluid is

√
dp

dρ
, where

ρ =
1

v
, the density of the fluid. Since gases are bad conductors of
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heat, the compressions and expansions which accompany sound-
vibrations must be considered as adiabatic, and not isothermal,
processes. The relation between the pressure and the density
is, therefore, in the case of perfect gases, not that expressed by

Boyle’s law
p

ρ
= pv = const., but that given by equation (38),

viz.—
p

ργ
= const.

Hence, by differentiation

dp

dρ
=
γp

ρ
= γpv,

or, according to (30),

dp

dρ
= γ

R

m
θ,

γ =
m

Rθ
· dp
dρ
.

In air at 0◦, the velocity of sound is

√
dp

dρ
= 33280

cm.

sec.
;

hence, according to our last equation, taking the values of m
from § 41, and of R from § 84, and θ = 273,

γ =
28.8

826 · 105
· 332802

273
= 1.41.

This agrees with the value calculated in § 87.
Conversely, the value of γ, calculated from the velocity of

sound, may be used in the calculation of cv in calories, for the
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determination of the mechanical equivalent of heat from (33).
This method of evaluating the mechanical equivalent of heat
was first proposed by Robert Meyer in 1842. It is true that
the assumption expressed in equation (31), that the internal
energy of air depends only on the temperature, is essential to
this method. In other words, this means that the difference
of the specific heats at constant pressure and constant volume
depends only on the external work. The direct proof of this fact,
however, must be considered as first given by the experiments
of Thomson and Joule, described in § 70.

§ 90. We shall now consider a more complex process, a
reversible cycle of a special kind, which has played an important
part in the development of thermodynamics, known as Carnot’s
cycle, and shall apply the first law to it in detail.

Let a substance of unit mass, starting from an initial state
characterized by the values θ1, v1, first be compressed adiabatic-
ally until its temperature rises to θ2 (θ2 > θ1) and its volume re-
duced to v2 (v2 < v1) (Fig. 3). Second, suppose it be now allowed
to expand isothermally to volume v′2 (v′2 > v2), in constant con-
nection with a heat-reservoir of constant temperature, θ2, which
gives out the heat of expansion Q2. Third, let it be further ex-
panded adiabatically until its temperature falls to θ1, and the
volume thereby increased to v′1. Fourth, let it be compressed
isothermally to the original volume v1, while a heat-reservoir
maintains the temperature at θ1, by absorbing the heat of com-
pression. All these operations are to be carried out in the revers-
ible manner described in § 71. The sum of the heat absorbed by
the system, and the work done on the system during this cycle
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is, by the first law,
Q+W = 0. (39)

The heat Q, that has been absorbed by the substance, is

Q = Q1 +Q2 (40)

(Q1 is here negative). The external work W may be calculated
from the adiabatic and the isothermal compressibility of the
substance. According to (20),

W = −
∫ v2,θ2

v1,θ1

p dv −
∫ v′2,θ2

v2,θ2

p dv −
∫ v′1,θ1

v′2,θ2

p dv −
∫ v1,θ1

v′1,θ1

p dv.

These integrals are to be taken along the curves 1, 2, 3, 4 re-
spectively; 1 and 3 being adiabatic, 2 and 4 isothermal.

Assuming the substance to be a perfect gas, the above integ-
rals can readily be found. If we bear in mind the relations (30)
and (36), we have

W =

∫ θ2

θ1

cv dθ−
R

m

∫ v′2

v2

θ2
v
dv+

∫ θ1

θ2

cv dθ−
R

m

∫ v1

v′1

θ1
v
dv. (41)

The work of the adiabatic compression in the first part of the
process is equal in value and opposite in sign to that of the adia-
batic expansion in the third part of the process. There remains,
therefore, the sum of the work in the isothermal portions:—

W = −R
m

(
θ2 log

v′2
v2

+ θ1 log
v′1
v1

)
.
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Now, the state (v2, θ2) was developed from (v1, θ1) by an adia-
batic process; therefore, by (37),

log θ2 + (γ − 1) log v2 = log θ1 + (γ − 1) log v1.

Similarly, for the adiabatic process, which leads from (v′2, θ2)
to (v′1, θ1),

log θ2 + (γ − 1) log v′2 = log θ1 + (γ − 1) log v′1.
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From these equations, it follows that

v′2
v2

=
v′1
v1
,

and

∴ W = −R
m

(θ2 − θ1) log
v′1
v1
.

Since, in the case considered, θ2 > θ1, and
v′1
v1

=
v′2
v2

> 1, the

total external work W is negative, i.e. mechanical work has been
gained by the process. But, from (39) and (40),

Q = Q1 +Q2 = −W ; (42)

therefore Q is positive, i.e. the heat-reservoir at temperature θ2
has lost more heat than the heat-reservoir at temperature θ1 has
gained.

The value of W , substituted in the last equation, gives

Q = Q1 +Q2 =
R

m
(θ2 − θ1) log

v′1
v1
. (43)

The correctness of this equation is evident from the direct calcu-
lation of the values of Q1 and Q2. The gas expands isothermally
while the heat-reservoir at temperature θ2 is in action. The
internal energy of the gas therefore remains constant, and the
heat absorbed is equal in magnitude and opposite in sign to the
external work. Hence, by equating Q2 to the second integral
in (41),

Q2 =
R

m
θ2 log

v′2
v2

=
R

m
θ2 log

v′1
v1
,
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and, similarly, by equating Q1 to the fourth integral in (41),

Q1 =
R

m
θ1 log

v1
v′1

= −R
m
θ1 log

v′1
v1
,

which agrees with equation (43).
There exists, then, between the quantitiesQ1,Q2,W , besides

the relation given in (42), this new relation—

Q1 : Q2 : W = (−θ1) : θ2 : (θ1 − θ2). (44)

§ 91. In order, now, to survey all the effects of the above
Carnot cycle, we shall compare the initial and final states of
all the bodies concerned. The gas operated upon has not been
changed in any way by the process, and may be left out of ac-
count. It has done service only as a transmitting agent, in order
to bring about changes in the surroundings. The two reser-
voirs, however, have undergone a change, and, besides, a positive
amount of external work, W ′ = −W , has been gained; i.e. at the
close of the process certain weights, which were in action during
the compression and the expansion, are found to be at a higher
level than at the beginning, or a spring, serving similar purposes,
is at a greater tension, etc. On the other hand, the heat-reservoir
at θ2 has given out heat to the amount Q2, and the cooler reser-
voir at θ1 has received the smaller amount Q′1 = −Q1. The heat
that has vanished is equivalent to the work gained. This result
may be briefly expressed as follows: The quantity of heat Q2,
at temperature θ2, has passed in part (Q′1) to a lower temperat-
ure (θ1), and has in part (Q2−Q′1 = Q1 +Q2) been transformed
into mechanical work. Carnot’s cycle, performed with a per-
fect gas, thus affords a means of drawing heat from a body and



applications to homogeneous systems. 79

of gaining work in its stead, without introducing any changes
in nature except the transference of a certain quantity of heat
from a body of higher temperature to one of lower temperature.

But, since the process described is reversible in all its parts,
it may be put into effect in such a way that all the quant-
ities, Q1, Q2, W , change sign, Q1 and W becoming positive,
Q2 = −Q′2 negative. In this case the hotter reservoir at θ2 re-
ceives heat to the amount Q′2, partly from the colder reservoir
(at θ1), and partly from the mechanical work expended (W ).
By reversing Carnot’s cycle, we have, then, a means of trans-
ferring heat from a colder to a hotter body without introducing
any other changes in nature than the transformation of a cer-
tain amount of mechanical work into heat. We shall see, later,
that, for the success of Carnot’s reversible cycle, the nature of
the transmitting agent or working substance is immaterial, and
that perfect gases are, in this respect, neither superior nor in-
ferior to other substances (cf. § 137).



CHAPTER III.

APPLICATIONS TO NON-HOMOGENEOUS SYSTEMS.

§ 92. The propositions discussed in the preceding chapter are,
in a large part, also applicable to substances which are not per-
fectly homogeneous in structure. We shall, therefore, in this
chapter consider mainly such phenomena as characterize the in-
homogeneity of a system.

Let us consider a system composed of a number of homo-
geneous bodies in juxtaposition, separated by given bounding
surfaces. Such a system may, or may not, be chemically homo-
geneous. A liquid in contact with its vapour is an example of the
first case, if the molecules of the latter be identical with those
of the former. The beginning of a chemical reaction, inasmuch
as a substance is in contact with another of different chemical
constitution, is an example of the second. Whether a system
is physically homogeneous or not, can, in most cases, be ascer-
tained beyond doubt, by finding surfaces of contact within the
system, or, by other means—in the case of emulsions, for ex-
ample, by determining the vapour pressure or the freezing point.
The question as to the chemical homogeneity, i.e. the presence
of one kind of molecule only, is much more difficult, and has
hitherto been answered only in special cases. For this reason we
classify substances according to their physical and not according
to their chemical homogeneity.

§ 93. One characteristic of processes in non-homogeneous
systems consists in their being generally accompanied by con-
siderable changes of temperature, e.g. in evaporation or in ox-
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idation. To maintain the initial temperature and pressure con-
sequently requires considerable exchange of heat with the sur-
roundings and corresponding external work. The latter, how-
ever, is generally small compared with the external heat, and
may be neglected in most chemical processes. In thermochem-
istry, therefore, the external effects,

Q+W = U2 − U1, (45)

are generally measured in calories (the heat equivalent of the ex-
ternal effects). The external work, W , is small compared with Q.
Furthermore, most chemical processes are accompanied by a rise
in temperature, or, if the initial temperature be re-established,
by an external yield of heat (exothermal processes). Therefore,
in thermochemistry, the heat given out to the surroundings in or-
der to restore the initial temperature is denoted as the “positive
heat effect” of the process. In our equations we shall therefore
use Q (the heat absorbed) with the negative sign, in processes
with positive heat effect (e.g. combustion); with the positive
sign, in those with negative heat effect (e.g. evaporation, fusion,
dissociation).

§ 94. To make equation (45) suitable for thermochemistry
it is expedient to denote the internal energy U of a system in
a given state, by a symbol denoting its chemical constitution.
J. Thomsen introduced a symbol of this kind. He denoted by the
formulæ for the atomic or molecular weight of the substances en-
closed in brackets, the internal energy of a corresponding weight
referred to an arbitrary zero of energy. Thus [Pb], [S], [PbS]
denote the energies of an atom of lead, an atom of sulphur, and
a molecule of lead sulphide respectively. In order to express the
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fact that the formation of a molecule of lead sulphide from its
atoms is accompanied by a heat effect of 18, 400 cal., the external
work of the process being negligible, we put

U1 = [Pb] + [S]; U2 = [PbS];

W = 0; Q = −18, 400 cal.,

and equation (45) becomes

−18, 400 cal. = [PbS]−[Pb]−[S],

or, as usually written,

[Pb] + [S]−[PbS] = 18, 400 cal.

This means that the internal energy of lead and sulphur, when
separate, is 18, 400 calories greater than that of their combina-
tion at the same temperature. That the internal energies com-
pared actually refer to the same material system, can be checked
by the use of the molecular formulæ. The equation could be sim-
plified by selecting the uncombined state of the elements Pb and
S as the zero of energy. Then (§ 64), [Pb] + [S] = 0, and

[PbS] = −18, 400 cal.

§ 95. To define accurately the state of a substance, and
thereby its energy, besides its chemical nature and mass, its tem-
perature and pressure must be given. If no special statement is
made, as in the above example, mean laboratory temperature,
i.e. about 18◦ C., is generally assumed, and the pressure is sup-
posed to be atmospheric pressure. The pressure has, however,
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very little influence on the internal energy; in fact, none at all
in the case of perfect gases [equation (35)].

The state of aggregation should also be indicated. This may
be done, where necessary, by using brackets for the solids, par-
entheses for liquids, and braces for gases. Thus [H2O], (H2O),
{H2O} denote the energies of a molecule of ice, water, and water
vapour respectively. Hence, for the fusion of ice at 0◦ C.,

(H2O)−[H2O] = 80× 18 = 1440 cal.

It is often desirable, as in the case of solid carbon, sulphur,
arsenic, or isomeric compounds, to denote by some means the
special modification of the substance.

These symbols may be treated like algebraic quantities,
whereby considerations, which would otherwise present consid-
erable complications, may be materially shortened. Examples
of this are given below.

§ 96. To denote the energy of a solution or mixture of several
compounds, we may write the formulæ for the molecular weights
with the requisite number of molecules. Thus,

(H2SO4) + 5 (H2O)−(H2SO4 · 5 H2O) = 13, 100 cal.

means that the solution of 1 molecule of sulphuric acid in 5 mo-
lecules of water gives out 13, 100 calories of heat. Similarly, the
equation

(H2SO4) + 10 (H2O)−(H2SO4 · 10 H2O) = 15, 100 cal.

gives the heat effect on dissolving the same in ten molecules of
water. By subtracting the first equation from the second, we get

(H2SO4 · 5 H2O) + 5 (H2O)−(H2SO4 · 10 H2O) = 2000 cal.,
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i.e. on diluting a solution of 1 molecule of sulphuric acid dis-
solved in 5 molecules of water, by the addition of another 5 mo-
lecules of water, 2000 calories are given out.

§ 97. As a matter of experience, in very dilute solutions
further dilution no longer yields any appreciable amount of heat.
Thus, in indicating the internal energy of a dilute solution it is
often unnecessary to give the number of molecules of the solvent.
We write briefly

(H2SO4) + ( aq.)−(H2SO4 aq.) = 17, 900 cal.

to express the heat effect of infinite dilution of a molecule of sul-
phuric acid. Here ( aq.) denotes any amount of water sufficient
for the practical production of an infinitely dilute solution.

§ 98. Volumetric changes being very slight in chemical pro-
cesses which involve only solids and liquids, the heat equival-
ent of the external work W (§ 93) is a negligible quantity com-
pared with the heat effect. The latter alone, then, represents
the change of energy of the system:—

U2 − U1 = Q.

It, therefore, depends on the initial and final states only, and not
on the intermediate steps of the process. These considerations
do not apply, in general, when gaseous substances enter into
the reaction. It is only in the combustions in the “calorimetric
bomb,” extensively used by Berthelot and Stohmann in their in-
vestigations, that the volume remains constant and the external
work is zero. In these reactions the heat effect observed rep-
resents the total change of energy. In other cases, however, the
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amount of external work W may assume a considerable value,
and it is materially influenced by the process itself. Thus, a
gas may be allowed to expand, at the same time performing
work, which may have any value within certain limits, from zero
upwards. But since its change of energy U2 − U1 depends on
the initial and final states only, a greater amount of work done
against the external forces necessitates a smaller heat effect for
the process, and vice versâ. To find the latter, not only the
change of the internal energy, but also the amount of the ex-
ternal work must be known. This renders necessary an account
of the external conditions under which the process takes place.

§ 99. Of all the external conditions that may accompany
a chemical process, constant (atmospheric) pressure is the one
which is of the most practical importance: p = p0. The external
work is then, according to equation (20),

W = −
∫ 2

1

p0 dV = p0(V1 − V2); (46)

that is, equal to the product of the pressure and the decrease of
volume. This, according to (45), gives

U2 − U1 = Q+ p0(V1 − V2). (47)

Now, the total decrease of volume, V1−V2, may generally be put
equal to the decrease of volume of the gaseous portions of the
system, neglecting that of the solids and liquids. Since, by (16),

V1 − V2 = R
θ

p0
(n1 − n2),



applications to non-homogeneous systems. 86

where n1, n2 are the number of gas molecules present before and
after the reaction, the heat equivalent of the external work at
constant pressure is, by (46) and (34),

W

J
=
p0(V1 − V2)

J
=
R

J
θ(n1 − n2) = 1.97θ(n1 − n2) cal.

The heat effect of a process at constant pressure is therefore

−Q = U1 − U2 + 1.97θ(n1 − n2) cal. (48)

If, for instance, one gram molecule of hydrogen and half a
gram molecule of oxygen, both at 18◦ C., combine at constant
pressure to form water at 18◦ C., we put

U1 = {H2}+ 1
2
{O2}; U2 = (H2O); n1 = 3

2
; n2 = 0; θ = 291.

The heat of combustion is, therefore, by (48),

−Q = {H2}+ 1
2
{O2} − (H2O) + 860 cal.,

i.e. 860 cal. more than would correspond to the decrease of the
internal energy, or to the combustion without the simultaneous
performance of external work.

§ 100. If we write equation (47) in the form

(U + p0V )2 − (U + p0V )1 = Q, (49)

it will be seen that, in processes under constant pressure p0, the
heat effect depends only on the initial and final states, just as in
the case when there is no external work. The heat effect, how-
ever, is not equal to the difference of the internal energies U , but
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to the difference of the values of the quantity (U + p0V ) at the
beginning and end of the process. This quantity is Gibbs’s “heat
function at constant pressure.” If, then, only processes at con-
stant pressure be considered, it will be expedient to regard the
symbols {H2}, {H2O}, etc., as representing the above function
(U + p0V ), instead of simply the energy U . Thus the difference
in the two values of the function will, in all cases, directly rep-
resent the heat effect. This notation is therefore adopted in the
following.

§ 101. To determine the heat effect of a chemical reaction at
constant pressure, the initial and final values of the heat func-
tion, U + p0V , of the system suffice. The general solution of
this problem, therefore, amounts to finding the heat functions
of all imaginable material systems in all possible states. Fre-
quently, different ways of transition from one state of a system
to another may be devised, which may serve either as a test of
the theory, or as a check upon the accuracy of the observations.
Thus J. Thomsen found the heat of neutralization of a solution
of sodium bicarbonate with caustic soda to be:

(NaHCO3 aq.) + (NaHO aq.)−(Na2CO3 aq.) = 9200 cal.

He also found the heat of neutralization of carbon dioxide to be:

(CO2 aq.) + 2 (NaHO aq.)−(Na2CO3 aq.) = 20, 200 cal.

By subtraction

(CO2 aq.) + (NaHO aq.)−(NaHCO3 aq.) = 11, 000 cal.
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This is the heat effect corresponding to the direct combination
of carbon dioxide and caustic soda to form sodium bicarbonate.
Berthelot verified this by direct measurement.

§ 102. Frequently, of two ways of transition, one is better
adapted for calorimetric measurements than the other. Thus,
the heat effect of the decomposition of hydrogen peroxide into
water and oxygen cannot readily be measured directly. Thomsen
therefore oxidized a solution of stannous chloride in hydrochloric
acid first by means of hydrogen peroxide:

(SnCl2 · 2 HCl aq.) + (H2O2 aq.)−(SnCl4 aq.) = 88, 800 cal.,

then by means of oxygen gas:

(SnCl2 · 2 HCl aq.) + 1
2
{O2}−(SnCl4 aq.) = 65, 700 cal.

Subtraction gives

(H2O2 aq.)−1
2
{O2}−( aq.) = 23, 100 cal.

for the heat effect of the decomposition of dissolved hydrogen
peroxide into oxygen and water.

§ 103. The heat of formation of carbon monoxide from solid
carbon and oxygen cannot be directly determined, because car-
bon never burns completely to carbon monoxide, but always, in
part, to carbon dioxide as well. Therefore Favre and Silbermann
determined the heat effect of the complete combustion of carbon
to carbon dioxide:

[C] + {O2}−{CO2} = 97, 000 cal.,
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and then determined the heat effect of the combustion of carbon
monoxide to carbon dioxide:

{CO}+ 1
2
{O2}−{CO2} = 68, 000 cal.

By subtraction we get

[C] + 1
2
{O2}−{CO} = 29, 000 cal.,

the required heat of formation of carbon monoxide.

§ 104. According to the above, theory enables us to calcu-
late the heat effect of processes which cannot be directly realized,
for as soon as the heat function of a system has been found in
any way, it may be compared with other heat functions.

Let the problem be, e.g., to find the heat of formation of
liquid carbon bisulphide from solid carbon and solid sulphur,
which do not combine directly. The following represent the
reactions:—

The combustion of solid sulphur to sulphur dioxide gas:

[S] + {O2}−{SO2} = 71, 100 cal.

The combustion of solid carbon to carbon dioxide:

[C] + {O2}−{CO2} = 97, 000 cal.

The combustion of carbon bisulphide vapour to carbon dioxide
and sulphur dioxide:

{CS2}+ 3 {O2}−{CO2}−2 {SO2} = 265, 100 cal.
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The condensation of carbon bisulphide vapour:

{CS2}−(CS2) = 6400 cal.

Elimination by purely mathematical processes furnishes the re-
quired heat of formation:

[C] + 2 [S]−(CS2) = −19, 500 cal.,

hence negative.
In organic thermochemistry the most important method of

determining the heat of formation of a compound consists in
determining the heat of combustion, first of the compound, and
then of its constituents.

Methane (marsh gas) gives by the complete combustion to
carbon dioxide and water (liquid):

{CH4}+ 2 {O2}−{CO2}−2 (H2O) = 211, 900 cal.,

but {H2}+ 1
2
{O2}−(H2O) = 68, 400 cal., (50)

and [C] + {O2}−{CO2} = 97, 000 cal.;

therefore, by elimination, we obtain the heat of formation of
methane from solid carbon and hydrogen gas:

[C] + 2 {H2}−{CH4} = 21, 900 cal.

§ 105. The external heat, Q, of a given change at constant
pressure will depend on the temperature at which the process
is carried out. In this respect the first law of thermodynamics
leads to the following relation:—
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From equation (49) it follows that, for any two given tem-
peratures, θ and θ′,

(U2 + p0V2)θ − (U1 + p0V1)θ = Qθ

and
(U2 + p0V2)θ′ − (U1 + p0V1)θ′ = Qθ′ .

Hence, by subtraction,

Qθ′ −Qθ =
[
(U2 + p0V2)θ′ − (U2 + p0V2)θ

]

−
[
(U1 + p0V1)θ′ − (U1 + p0V1)θ

]
;

i.e. the difference in the heat effects (Qθ − Qθ′) resulting from
performing the process at different temperatures, is equal to
the difference in the quantities of heat which, before and after
the reaction, would be required to raise the temperature of the
system from θ to θ′.

Thus the influence of the temperature on the combustion of
hydrogen to water (liquid) may be found by comparing the heat
capacity of the mixture (H2 + O2) with that of the water (H2O).
The former is equal to the molecular heat of hydrogen plus half
the molecular heat of oxygen. According to the table in § 87,
this is

6.82 + 3.47 = 10.29.

The latter is
1× 18 = 18.

The difference between these values is −7.71, and, therefore, the
heat of combustion of a gram molecule of hydrogen decreases
with rising temperature by 7.7 cal. per degree Centigrade.



PART III.

The Second Fundamental Principle
of Thermodynamics.

CHAPTER I.

INTRODUCTION.

§ 106. The second law of thermodynamics is essentially differ-
ent from the first law, since it deals with a question in no way
touched upon by the first law, viz. the direction in which a pro-
cess takes place in nature. Not every change which is consistent
with the principle of the conservation of energy satisfies also the
additional conditions which the second law imposes upon the
processes, which actually take place in nature. In other words,
the principle of the conservation of energy does not suffice for a
unique determination of natural processes.

If, for instance, an exchange of heat by conduction takes
place between two bodies of different temperature, the first law,
or the principle of the conservation of energy, merely demands
that the quantity of heat given out by the one body shall be
equal to that taken up by the other. Whether the flow of heat,
however, takes place from the colder to the hotter body, or vice
versâ, cannot be answered by the energy principle alone. The
very notion of temperature is alien to that principle, as can be
seen from the fact that it yields no exact definition of temper-
ature. Neither does the general equation (17) of the first law
contain any statement with regard to the direction of the par-
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ticular process. The special equation (50), for instance,

{H2}+ 1
2
{O2}−(H2O) = 68, 400 cal.,

means only that, if hydrogen and oxygen combine under con-
stant pressure to form water, the re-establishment of the initial
temperature requires a certain amount of heat to be given up to
surrounding bodies; and vice versâ, that this amount of heat is
absorbed when water is decomposed into hydrogen and oxygen.
It offers no information, however, as to whether hydrogen and
oxygen actually combine to form water, or water decomposes
into hydrogen and oxygen, or whether such a process can take
place at all in either direction. From the point of view of the
first law, the initial and final states of any process are completely
equivalent.

§ 107. In one particular case, however, does the principle of
the conservation of energy prescribe a certain direction to a pro-
cess. This occurs when, in a system, one of the various forms of
energy is at an absolute maximum (or minimum). It is evident
that, in this case, the direction of the change must be such that
the particular form of energy will decrease (or increase). This
particular case is realized in mechanics by a system of particles
at rest. Here the kinetic energy is at an absolute minimum,
and, therefore, any change of the system is accompanied by an
increase of the kinetic energy, and, if it be an isolated system, by
a decrease of the potential energy. This gives rise to an import-
ant proposition in mechanics, which characterizes the direction
of possible motion, and lays down, in consequence, the general
condition of mechanical equilibrium. It is evident that, if both
the kinetic and potential energies be at a minimum, no change
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can possibly take place, since none of these can increase at the
expense of the other. The system must, therefore, remain at
rest.

If a heavy liquid be initially at rest at different levels in two
communicating tubes, then motion will set in, so as to equal-
ize the levels, for the centre of gravity of the system is thereby
lowered, and the potential energy diminished. Equilibrium ex-
ists when the centre of gravity is at its lowest, and therefore the
potential energy at a minimum, i.e. when the liquid stands at the
same level in both tubes. If no special assumption be made with
regard to the initial velocity of the liquid, the above proposition
no longer holds. The potential energy need not decrease, and
the higher level might rise or sink according to circumstances.

If our knowledge of thermal phenomena led us to recognize
a state of minimum energy, a similar proposition would hold
for this, but only for this, particular state. In reality no such
minimum has been detected. It is, therefore, hopeless to seek to
reduce the general laws regarding the direction of thermodynam-
ical changes, as well as those of thermodynamical equilibrium,
to the corresponding propositions in mechanics which hold good
only for systems at rest.

§ 108. Although these considerations make it evident that
the principle of the conservation of energy cannot serve to de-
termine the direction of a thermodynamical process, and there-
with the conditions of thermodynamical equilibrium, unceasing
attempts have been made to make the principle of the conser-
vation of energy in some way or other serve this purpose. These
attempts have, in many encases, stood in the way of a clear
presentation of the second law. That attempts are still made to
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represent this law as contained in the principle of energy may
be seen from the fact that the too restricted term “energetics” is
sometimes applied to all investigations on these questions. The
conception of energy is not sufficient for the second law. It can-
not be exhaustively treated by breaking up a natural process
into a series of changes of energy, and then investigating the
direction of each change. We can always tell, it is true, what
are the different kinds of energy exchanged for one another; for
there is no doubt that the principle of energy must be fulfilled,
but the expression of the conditions of these changes remains
arbitrary, and this ambiguity cannot be completely removed by
any general assumption.

We often find the second law stated as follows: The change
of mechanical work into heat may be complete, but, on the con-
trary, that of heat into work must needs be incomplete, since,
whenever a certain quantity of heat is transformed into work,
another quantity of heat must undergo a corresponding and com-
pensating change; e.g. transference from higher to lower temper-
ature. This is quite correct in certain very special cases, but it
by no means expresses the essential feature of the process, as
a simple example will show. An achievement which is closely
associated with the discovery of the principle of energy, and
which is one of the most important for the theory of heat, is
the proposition expressed in equation (19), § 70, that the total
internal energy of a gas depends only on the temperature, and
not on the volume. If a perfect gas be allowed to expand, doing
external work, and be prevented from cooling by connecting it
with a heat-reservoir of higher temperature, the temperature of
the gas, and at the same time its internal energy, remains un-
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changed, and it may be said that the amount of heat given out
by the reservoir is completely changed into work without an ex-
change of energy taking place anywhere. Not the least objection
can be made to this. The proposition of the “incomplete trans-
formability of heat into work” cannot be applied to this case,
except by a different way of viewing the process, which, however,
changes nothing in the physical facts, and cannot, therefore, be
confirmed or refuted by them, namely, by the introduction of
new kinds of energy, only invented ad hoc. This consists in di-
viding the energy of the gas into several parts, which may then
individually depend also on the volume. This division has, how-
ever, to be carried out differently for different cases (e.g., in one
way for isothermal, in another for adiabatic processes), and ne-
cessitates complicated considerations even in cases of physical
simplicity. But when we pass from the consideration of the first
law of thermodynamics to that of the second, we have to deal
with a new fact, and it is evident that no definition, however in-
genious, although it contain no contradiction in itself, will ever
permit of the deduction of a new fact.

§ 109. There is but one way of clearly showing the signi-
ficance of the second law, and that is to base it on facts by
formulating propositions which may be proved or disproved by
experiment. The following proposition is of this character: It is
in no way possible to completely reverse any process in which
heat has been produced by friction. For the sake of example we
shall refer to Joule’s experiments on friction, described in § 60,
for the determination of the mechanical equivalent of heat. Ap-
plied to these, our proposition says that, when the falling weights
have generated heat in water or mercury by the friction of the
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paddles, no process can be invented which will completely re-
store everywhere the initial state of that experiment, i.e. which
will raise the weights to their original height, cool the liquid,
and otherwise leave no change. The appliances used may be of
any kind whatsoever, mechanical, thermal, chemical, electrical,
etc., but the condition of complete restoration of the initial state
renders it necessary that all materials and machines used must
ultimately be left exactly in the condition in which they were
before their application. Such a proposition cannot be proved
a priori, neither does it amount to a definition, but it contains a
definite assertion, to be stated precisely in each case, which may
be verified by actual experiment. The proposition is therefore
correct or incorrect.

§ 110. Another proposition of this kind, and closely connec-
ted with the former, is the following: It is in no way possible to
completely reverse any process in which a gas expands without
performing work or absorbing heat, i.e. with constant total en-
ergy (as described in § 68). The word “completely” again refers
to the accurate reproduction of the initial conditions. To test
this, the gas, after it had assumed its new state of equilibrium,
might first be compressed to its former volume by a weight fall-
ing to a lower level. External work is done on the gas, and it is
thereby heated. The problem is now to bring the gas to its initial
condition, and to raise the weight. The gas might be reduced to
its original temperature by conducting the heat of compression
into a colder heat-reservoir. In order that the process may be
completely reversed, the reservoir must be deprived of the heat
gained thereby, and the weight raised to its original position.
This is, however, exactly what was asserted in the preceding
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paragraph to be impracticable.

§ 111. A third proposition in point refers to the conduction
of heat. Supposing that a body receives a certain quantity of
heat from another of higher temperature, the problem is to com-
pletely reverse this process, i.e. to convey back the heat without
leaving any change whatsoever. In the description of Carnot’s
reversible cycle it has been pointed out, that heat can at any
time be drawn from a heat-reservoir and transferred to a hot-
ter reservoir without leaving any change except the expenditure
of a certain amount of work, and the transference of an equi-
valent amount of heat from one reservoir to the other. If this
heat could be removed, and the corresponding work recovered
without other changes, the process of heat-conduction would be
completely reversed. Here, again, we have the problem which
was declared in § 109 to be impracticable.

Further examples of processes to which the same considera-
tions apply are, diffusion, the freezing of an overcooled liquid,
the condensation of a supersaturated vapour, all explosive reac-
tions, and, in fact, every transformation of a system into a state
of greater stability.

§ 112. A process which can in no way be completely reversed
is termed irreversible, all other processes reversible. That a pro-
cess may be irreversible, it is not sufficient that it cannot be
directly reversed. This is the case with many mechanical pro-
cesses which are not irreversible (cf. § 113). The full requirement
is, that it be impossible, even with the assistance of all agents
in nature, to restore everywhere the exact initial state when
the process has once taken place. The propositions of the three
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preceding paragraphs, therefore, declare, that the generation of
heat by friction, the expansion of a gas without the perform-
ance of external work and the absorption of external heat, the
conduction of heat, etc., are irreversible processes.

§ 113. We now turn to the question of the actual existence of
reversible and irreversible processes. Numerous reversible pro-
cesses can at least be imagined, as, for instance, those consisting
of a succession of states of equilibrium, as fully explained in § 71,
and, therefore, directly reversible in all their parts. Further, all
perfectly periodic processes, e.g. an ideal pendulum or planetary
motion, are reversible, for, at the end of every period, the initial
state is completely restored. Also, all mechanical processes with
absolutely rigid bodies and absolutely incompressible liquids, as
far as friction can be avoided, are reversible. By the introduc-
tion of suitable machines with absolutely unyielding connecting
rods, frictionless joints and bearings, inextensible belts, etc., it
is always possible to work the machines in such a way as to bring
the system completely into its initial state without leaving any
change in the machines, for the machines of themselves do not
perform work.

If, for instance, a heavy liquid, originally at rest at different
levels in two communicating tubes (§ 107), be set in motion by
gravity, it will, in consequence of its kinetic energy, go beyond
its position of equilibrium, and, since the tubes are supposed
frictionless, again swing back to its exact original position. The
process at this point has been completely reversed, and therefore
belongs to the class of reversible processes. As soon as friction
is admitted, however, its reversibility is at least questionable.
Whether reversible processes exist in nature or not, is not a pri-
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ori evident or demonstrable. There is, however, no purely logical
objection to imagining that a means may some day be found of
completely reversing some process hitherto considered irrevers-
ible: one, for example, in which friction or heat-conduction plays
a part. But it can be demonstrated—and this will be done in the
following chapter—that if, in a single instance, one of the pro-
cesses declared to be irreversible in §§ 109, etc., should be found
to be reversible, then all of these processes must be reversible in
all cases. Consequently, either all or none of these processes are
irreversible. There is no third possibility. If those processes are
not irreversible, the entire edifice of the second law will crumble.
None of the numerous relations deduced from it, however many
may have been verified by experience, could then be considered
as universally proved, and theoretical work would have to start
from the beginning. (The so-called proofs of “energetics” are
not a substitute, for a closer test shows all of them to be more
or less imperfect paraphrases of the propositions to be proved.
This is not the place, however, to demonstrate this point.) It
is this foundation on the physical fact of irreversibility which
forms the strength of the second law. If, therefore, it must be
admitted that a single experience contradicting that fact would
render the law untenable, on the other hand, any confirmation
of part supports the whole structure, and gives to deductions,
even in seemingly remote regions, the full significance possessed
by the law itself.

§ 114. Since the decision as to whether a particular process
is irreversible or reversible depends only on whether the process
can in any manner whatsoever be completely reversed or not,
the nature of the initial and final states, and not the interme-
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diate steps of the process, entirely settle it. The question is,
whether or not it is possible, starting from the final state, to
reach the initial one in any way without any other change. The
second law, therefore, furnishes a relation between the quant-
ities connected with the initial and final states of any natural
process. The final state of an irreversible process is evidently
in some way discriminate from the initial state, while in revers-
ible processes the two states are in certain respects equivalent.
The second law points out this characteristic property of both
states, and also shows, when the two states are given, whether a
transformation is possible in nature from the first to the second,
or from the second to the first, without leaving changes in other
bodies. For this purpose, of course, the two states must be fully
characterized. Besides the chemical constitution of the systems
in question, the physical conditions—viz. the state of aggrega-
tion, temperature, and pressure in both states—must be known,
as is necessary for the application of the first law.

The relation furnished by the second law will evidently be
simpler the nearer the two states are to one another. On this
depends the great fertility of the second law in its treatment
of cyclic processes, which, however complicated they may be,
give rise to a final state only slightly different from the initial
state (§ 91).

§ 115. Since there exists in nature no process entirely free
from friction or heat-conduction, all processes which actually
take place in nature, if the second law be correct, are in reality
irreversible; reversible processes form only an ideal limiting case.
They are, however, of considerable importance for theoretical
demonstration and for application to states of equilibrium.



CHAPTER II.

PROOF.

§ 116. The second fundamental principle of thermodynam-
ics being, like the first, an empirical law, we can speak of its
proof only in so far as its total purport may be deduced from a
single self-evident proposition. We, therefore, put forward the
following proposition as being given directly by experience: It is
impossible to construct an engine which will work in a complete
cycle, and produce no effect except the raising of a weight and
the cooling of a heat-reservoir. Such an engine could be used
simultaneously as a motor and a refrigerator without any waste
of energy or material, and would in any case be the most prof-
itable engine ever made. It would, it is true, not be equivalent
to perpetual motion, for it does not produce work from nothing,
but from the heat, which it draws from the reservoir. It would
not, therefore, like perpetual motion, contradict the principle
of energy, but would, nevertheless, possess for man the essential
advantage of perpetual motion, the supply of work without cost;
for the inexhaustible supply of heat in the earth, in the atmo-
sphere, and in the sea, would, like the oxygen of the atmosphere,
be at everybody’s immediate disposal. For this reason we take
the above proposition as our starting point. Since we are to
deduce the second law from it, we expect, at the same time, to
make a most serviceable application of any natural phenomenon
which may be discovered to deviate from the second law. As
soon as a phenomenon is found to contradict any legitimate
conclusions from the second law, this contradiction must arise
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from an inaccuracy in our first assumption, and the phenomenon
could be used for the construction of the above-described engine.
We shall in the following, according to the proposal of Ostwald,
speak of perpetual motion of the second kind, since it stands in
the same relation to the second law as perpetual motion of the
first kind does to the first law. In connection with all objections
to the second law, it must be borne in mind that, if no errors
are to be found in the line of proof, they are ultimately directed
against the impossibility of perpetual motion of the second kind
(§ 136).∗

§ 117. From the impossibility of perpetual motion of the
second kind, it follows, in the first place, that the generation
of heat by friction is irreversible (cf. def. § 112). For suppos-
ing it were not so, i.e. supposing a method could be found by
which a process involving generation of heat by friction could
be completely reversed, this very method would produce what
is identically perpetual motion of the second kind: viz. a change
which consists of nothing but the production of work, and the

∗I desire to emphasize here, that the starting point selected by me
for the proof of the second law coincides fundamentally with that which
R. Clausius, or which Sir W. Thomson, or which J. Clerk Maxwell used
for the same purpose. The fundamental proposition which each of these in-
vestigators placed at the beginning of his deductions asserts each time, only
in different form, the impossibility of the realization of perpetual motion
of the second kind. I have selected the above form of expression, because
of its apparent technical significance. Not a single really rational proof of
the second law has thus far been advanced which does not require this fun-
damental principle, however numerous the attempts in this direction may
have been in recent times, nor do I believe that such an attempt will ever
meet with success.
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absorption of an equivalent amount of heat.

§ 118. It follows, further, that the expansion of a gas
without the performance of external work, or the absorption of
heat, is irreversible. For, suppose a method were known of com-
pletely reversing this process, i.e. of reducing the volume of a
gas, without leaving any other change whatsoever, this method
could be utilized for the production of perpetual motion of the
second kind in the following manner. Allow the gas to do work
by expansion, supplying the energy lost thereby by the conduc-
tion of heat from a reservoir at the same or higher temperature,
and then, by the assumed method, reduce the volume of the
gas to its initial value without leaving any other change. This
process might be repeated as often as we please, and would
therefore represent an engine working in a complete cycle, and
producing no effect except the performance of work, and the
withdrawal of heat from a reservoir, i.e. perpetual motion of the
second kind.

On the basis of the proposition we have just proved, that
the expansion of a gas without the performance of work and the
absorption of heat is irreversible, we shall now carry through the
proof of the second law for those bodies whose thermodynamical
properties are most completely known, viz. for perfect gases.

§ 119. If a perfect gas be subjected to infinitely slow com-
pression or expansion, and if, at the same time, heat be applied
or withdrawn, we have, by equation (22), in each infinitely small
portion of the process, per unit mass,

q = du+ p dv



proof. 105

or, since for a perfect gas,

du = cv dθ,

and

p =
R

m
· θ
v
,

q = cv dθ +
R

m
· θ
v
dv.

If the process be adiabatic, then q = 0, and the integration
of the above equation gives (as in § 88) the function

cv log θ +
R

m
log v

equal to a constant. We shall now put

φ = cv log θ +
R

m
log v + const., (51)

and call this function, after Clausius, the entropy of unit mass of
the gas. The constant, which has to be added, can be determined
by arbitrarily fixing the zero state. Accordingly

Φ = Mφ = M

(
cv log θ +

R

m
log v + const.

)
(52)

is the entropy of mass M of the gas. The entropy of the
gas, therefore, remains constant during the described adiabatic
change of state.
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§ 120. On the application of heat, the entropy of the gas
changes, in the case considered, by

dΦ = M

(
cv
dθ

θ
+
R

m

dv

v

)
=
M · q
θ

=
Q

θ
. (53)

It increases or decreases according as heat is absorbed or evolved.
The absorbed heat Q has here been broken up into two

factors, θ and dΦ. According to a view which has recently been
brought forward, this breaking up of heat into factors is regarded
as a general property of heat. It should, however, be emphasized
that equation (53) is by no means generally true. It holds only
in the particular case where the external work performed by the
gas is expressed by p dV . The relation

dΦ = M

(
cv
dθ

θ
+
R

m

dv

v

)
=
dU + p dV

θ

holds, quite generally, for any process in which the temperature
of the gas is increased by dθ, and the volume by dV . It is, in
fact, only a different mathematical form for the definition of the
entropy given in (52). On the other hand, the equation

Q = dU + p dV

holds by no means in all cases, but should, in general, be replaced
by

Q+W = dU,

where W , the work done on the substance, may have any value
within certain limits. For instance, W = 0, if the gas be con-
veyed into its new state of equilibrium without performing ex-
ternal work (as described in § 68). In this case, Q = dU , and
the equation Q = θ dΦ no longer holds.
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§ 121. We shall now consider two gases which can commu-
nicate heat to one another by conduction, but may, in general,
be under different pressures. If the volume of one, or both, of the
gases be changed by some reversible process, care being taken
that the temperatures of the gases equalize at each moment, and
that no exchange of heat takes place with surrounding bodies,
we have, according to equation (53), during any element of time,
for the first gas,

dΦ1 =
Q1

θ1
,

and, for the second gas,

dΦ2 =
Q2

θ2
.

According to the conditions of the process,

θ1 = θ2 and Q1 +Q2 = 0,

whence,
dΦ1 + dΦ2 = 0

or, for a finite change,

Φ1 + Φ2 = const. (54)

The sum of the entropies of the two gases remains constant
during the described process.

§ 122. Any such process with two gases is evidently re-
versible in all its parts, for it may be directly reversed without
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leaving changes in the surroundings. From this follows the pro-
position that it is always possible to bring two gases, by a revers-
ible process, without leaving changes in∗ other bodies, from any
given state to any other given state, if the sum of the entropies
in the two states be equal.

Let an initial state of the gases be given by the temperatures
θ1, θ2, and the specific volumes v1, v2; a second state by the
corresponding values θ′1, θ

′
2; v

′
1, v

′
2. We now suppose that

Φ1 + Φ2 = Φ′1 + Φ′2. (55)

Bring the first gas to the temperature θ2 by a reversible adiabatic
compression or expansion; then place the two gases in thermal
contact with one another, and continue to compress or expand
the first infinitely slowly. Heat will now pass between the two
gases, and the entropy of the first one will change, and it will
be possible to make this entropy assume the value Φ′1. But,
according to (54), during the above process the sum of the two
entropies remains constant, and = Φ1+Φ2; therefore the entropy
of the second gas is (Φ1 + Φ2)−Φ′1, which is, according to (55),
equal to Φ′2. If we now separate the two gases, and compress
or expand each one adiabatically and reversibly until they have
the required temperatures θ′1 and θ′2, the specific volumes must
then be v′1 and v′2, and the required final state has been reached.

This process is reversible in all its parts, and no changes
remain in other bodies; in particular, the surroundings have

∗The emphasis is to be put on the word “in.” Changes of position of
ponderable bodies (for example, the raising or lowering of weights) are not
internal changes; but, of course, temperature and density changes are.
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neither gained nor lost heat. The conditions of the problem
have therefore been fulfilled, and the proposition proved.

§ 123. A similar proposition can readily be proved for any
number of gases. It is always possible to bring a system of
n gases from any one state to any other by a reversible pro-
cess without leaving changes in other bodies, if the sum of the
entropies of all the gases is the same in both states, i.e. if

Φ1 + Φ2 + · · ·+ Φn = Φ′1 + Φ′2 + · · ·+ Φ′n. (56)

By the process described in the preceding paragraph we may,
by the successive combination of pairs of gases of the system,
bring the first, then the second, then the third, and so on to
the (n− 1)th gas, to the required entropy. Now, in each of the
successive processes the sum of the entropies of all the gases re-
mains constant, and, since the entropies of the first (n−1) gases
are Φ′1, Φ′2, . . . , Φ′n−1, the entropy of the nth gas is necessarily

(Φ1 + Φ2 + · · ·+ Φn)− (Φ′1 + Φ′2 + · · ·+ Φ′n−1).

This is, according to (56), the required value Φ′n. Each gas
can now be brought by an adiabatic reversible process into the
required state, and the problem is solved.

If we call the sum of the entropies of all the gases the entropy
of the whole system, we may then say: If a system of gases has
the same entropy in two different states it may be transformed
from the one to the other by a reversible process, without leaving
changes in other bodies.

§ 124. We now introduce the proposition proved in § 118,
that the expansion of a perfect gas, without performing external
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work or absorbing heat, is irreversible; or, what is the same
thing, that the transition of a perfect gas to a state of greater
volume and equal temperature, without external effects, as de-
scribed in § 68, is irreversible. Such a process corresponds to
an increase of the entropy, according to the definition (52). It
immediately follows that it is altogether impossible to decrease
the entropy of a gas without producing a change in surround-
ing objects. If this were possible, the irreversible expansion of a
gas could be completely reversed. After the gas had expanded
without external effects, and had assumed its new state of equi-
librium, the entropy of the gas could be reduced to its initial
value, without leaving changes in other bodies, by the supposed
method, and then, by an adiabatic reversible process, brought to
its initial temperature, and thereby also to its original volume.
This would completely reverse the first expansion, and furnish,
according to § 118, perpetual motion of the second kind.

§ 125. A system of two or more gases behaves in the same
way. There exists, in nature, no means of diminishing the en-
tropy of a system of perfect gases, without leaving changes in
bodies outside the system. A contrivance which would accom-
plish this, be it mechanical, thermal, chemical, or electrical in
nature, might be used to reduce the entropy of a single gas
without leaving changes in other bodies.

Suppose a system of gases to have passed in any manner
from one state in which their entropies are Φ1, Φ2, . . . , Φn, to
a state where they are Φ′1, Φ′2, . . . , Φ′n, and that no change has
been produced in any body outside the system, and let

Φ′1 + Φ′2 + · · ·+ Φ′n < Φ1 + Φ2 + · · ·+ Φn, (57)
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then it is possible, according to the proposition proved in § 123,
to bring the system by a reversible process, without leaving
changes in other bodies, into any other state in which the sum
of the entropies is

Φ′1 + Φ′2 + · · ·+ Φ′n,

and accordingly into a state in which the first gas has the en-
tropy Φ1, the second the entropy Φ2, . . . , the (n − 1)th the
entropy Φn−1, and the nth in consequence the entropy

(Φ′1 + Φ′2 + · · ·+ Φ′n)− Φ1 − Φ2 − · · · − Φn−1. (58)

The first (n− 1) gases may now be reduced to their original
state by reversible adiabatic processes. The nth gas possesses
the entropy (58), which is, according to the supposition (57),
smaller than the original entropy Φn. The entropy of the nth gas
has, therefore, been diminished without leaving changes in other
bodies. This we have already proved in the preceding paragraph
to be impossible.

The general proposition has, therefore, been proved, and we
may immediately add the following.

§ 126. If a system of perfect gases pass in any way from one
state to another, and no changes remain in surrounding bodies,
the entropy of the system is certainly not smaller, but either
greater than, or, in the limit, equal to that of the initial state;
in other words, the total change of the entropy ≥ 0. The sign
of inequality corresponds to an irreversible process, the sign of
equality to a reversible one. The equality of the entropies in both
states is, therefore, not only a sufficient, as described in § 123,
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but also a necessary condition of the complete reversibility of
the transformation from the one state to the other, provided no
changes are to remain in other bodies.

§ 127. The scope of this proposition is considerable, since
there have designedly been imposed no restrictions regarding
the way in which the system passes from its initial to its final
state. The proposition, therefore, holds not only for slow and
simple processes, but also for physical and chemical ones of any
degree of complication, provided that at the end of the process
no changes remain in any body outside the system. It must not
be supposed that the entropy of a gas has a meaning only for
states of equilibrium. We may assume each sufficiently small
particle, even of a gas in turmoil, to be homogeneous and at
a definite temperature, and must, therefore, according to (52),
assign to it a definite value of the entropy. M , v, and θ are then
the mass, specific volume, and temperature of the particle under
consideration. A summation extending over all the particles of
the mass—within which the values of v and θ may vary from
particle to particle—gives the entropy of the whole mass of the
gas in the particular state. The proposition still holds, that the
entropy of the whole gas must continually increase during any
process which does not give rise to changes in other bodies, e.g.
when a gas flows from a vessel into a vacuum (§ 68). It will be
seen that the velocity of the gas particles does not influence the
value of the entropy; neither does their height above a certain
horizontal plane, although they are considered to have weight.

§ 128. The laws which we have deduced for perfect gases
may be transferred to any substance in exactly the same way.
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The main difference is, that the expression for the entropy of any
body cannot, in general, be written down in finite quantities,
since the characteristic equation is not generally known. But it
can be demonstrated—and this is the deciding point—that, for
any other body, there exists a function with the characteristic
properties of the entropy.

Imagine any homogeneous body to pass through a certain
reversible or irreversible cycle and to be brought back to its exact
original state, and let the external effects of this process consist
in the performance of work and in the addition or withdrawal
of heat. The latter may be brought about by means of any
required number of suitable heat-reservoirs. After the process,
no changes remain in the substance itself; the heat-reservoirs
alone have suffered change. We shall now assume all the heat-
reservoirs to be perfect gases, kept either at constant volume or
at constant pressure, but, at any rate, subject only to reversible
changes of volume. According to our last proposition, the sum
of the entropies of all these gases cannot have decreased, since
after the process no change remains in any other body.

If Q denote the amount of heat given to the substance during
an infinitely small element of time by one of the reservoirs; θ, the
temperature of the reservoir at that moment; then, according
to equation (53), the reservoir’s change of entropy during that
element of time is

−Q
θ
.

The change of the entropy of all the reservoirs, during all the
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elements of time considered, is

−
∑ Q

θ
.

Now, according to § 126, we have the following condition:—

−
∑ Q

θ
≥ 0

or ∑ Q

θ
≤ 0.

This is the form in which the second law was first enunciated by
Clausius.

A further condition is given by the first law; for, according
to (17) in § 63, we have, during every element of time of the
process,

Q+W = dU,

U being the initial energy of the body, and W the work done on
the body during the element of time.

§ 129. If we now make the special assumption that the ex-
ternal pressure is, at any moment, equal to the pressure p of the
substance, the work of compression becomes, according to (20),

W = −p dV,

whence
Q = dU + p dV.

If, further, each heat-reservoir be exactly at the temperature
of the substance at the moment when brought into operation,
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the cyclic process is reversible, and the inequality of the second
law becomes an equality:—

∑ Q

θ
= 0,

or, on substituting the value of Q,

∑ dU + p dV

θ
= 0.

All the quantities in this equation refer to the state of the
substance itself. It admits of interpretation without reference to
the heat-reservoirs, and amounts to the following proposition.

§ 130. If a homogeneous body be taken through a series of
states of equilibrium (§ 71), that follow continuously from one
another, back to its initial state, then the summation of the dif-
ferential

dU + p dV

θ

extending over all the states of that process gives the value zero.
It follows that, if the process be not continued until the initial
state, 1, is again reached, but be stopped at a certain state, 2,
the value of the summation

∫ 2

1

dU + p dV

θ
(59)

depends only on the states 1 and 2, not on the manner of the
transformation from state 1 to state 2. If two series of changes
leading from 1 to 2 be considered (e.g. curves α and β in Fig. 2,
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§ 75), these can be combined into an infinitely slow cyclic pro-
cess. We may, for example, go from 1 to 2 along α, and return
to 1 along β.

It has been demonstrated that over the entire cycle:—

∫ 2

1 (α)

dU + p dV

θ
+

∫ 1

2 (β)

dU + p dV

θ
= 0,

whence ∫ 2

1 (α)

dU + p dV

θ
=

∫ 2

1 (β)

dU + p dV

θ
.

The integral (59) with the above-proved properties has been
called by Clausius the entropy of the body in state 2, referred
to state 1 as the zero state. The entropy of a body in a given
state, like the internal energy, is completely determined up to
an additive constant, whose value depends on the zero state.

Denoting the entropy, as formerly, by Φ, we have:

Φ =

∫
dU + p dV

θ

and

dΦ =
dU + p dV

θ
(60)

or per unit mass:

dφ =
du+ p dv

θ
. (61)

This, again, leads to the value (51) for a perfect gas. The
expression for the entropy of any body may be found by im-
mediate integration (§ 254), provided its energy, U = Mu, and
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its volume, V = Mv, are known as functions, say, of θ and p.
Since, however, these are not completely known except for per-
fect gases, we have to content ourselves in general with the dif-
ferential equation. For the proof, and for many applications of
the second law, it is, however, sufficient to know that this dif-
ferential equation contains in reality a unique definition of the
entropy.

§ 131. We may, therefore, just as in the case of perfect
gases, speak of the entropy of any substance as of a finite quant-
ity determined by the momentary values of temperature and
volume, even when the substance undergoes reversible or irre-
versible changes. The differential equation (61) holds, as was
stated in § 120 in the case of perfect gases, for any change of
state, including irreversible changes. This more general applica-
tion of the conception of the entropy in no wise contradicts the
manner of its deduction. The entropy of a body in any given
state is measured by means of a reversible process which brings
the body from that state to the zero state. This ideal process,
however, has nothing to do with any actual reversible or irrevers-
ible changes which the body may have undergone or be about
to undergo.

On the other hand, it should be stated that the differential
equation (60), while it holds for changes of volume and temper-
ature, does not apply to changes of mass, for this kind of change
was in no way referred to in the definition of the entropy.

Finally, we shall call the sum of the entropies of a number of
bodies briefly the entropy of the system composed of those bod-
ies. Thus the entropy of a body whose particles are not at uni-
form temperature, and have different velocities, may be found,
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as in the case of gases (§ 127), by a summation extending over
all its elements of mass, provided the temperature and density
within each infinitely small element of mass may be considered
uniform. Neither the velocity nor the weight of the particles
enter into the expression for the entropy.

§ 132. The existence and the value of the entropy having
been established for all states of a body, there is no difficulty in
transferring the proof, which was given for perfect gases (begin-
ning in § 119), to any system of bodies. Just as in § 119 we find
that, during reversible adiabatic expansion or compression of a
body, its entropy remains constant, while by the absorption of
heat the change of the entropy is

dΦ =
Q

θ
. (62)

This relation holds only for reversible changes of volume, as was
shown for perfect gases in § 120. Besides, it is found, as in § 121,
that during reversible expansion or compression of two bodies at
a common temperature, if they be allowed to exchange heat by
conduction with one another, but not with surrounding bodies,
the sum of their entropies remains constant. A line of argument
corresponding fully to that advanced for perfect gases then leads
to the following general result:∗ It is impossible in any way to di-
minish the entropy of a system of bodies without thereby leaving

∗With regard to the generalization of the theorem which was proved for
a perfect gas in § 124, it may be stated that a certain difficulty arises in
the special case of an incompressible body. In this case the body cannot be
expanded. Professor Krigar-Menzel, who drew my attention to this, sent
me at the same time the following proof. Proposition: It is impossible to
diminish the entropy of an incompressible body without leaving changes in
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behind changes in other bodies. If, therefore, a system of bodies
has changed its state in a physical or chemical way, without leav-
ing any change in bodies not belonging to the system, then the
entropy in the final state is greater than, or, in the limit, equal
to the entropy in the initial state. The limiting case corresponds
to reversible, all others to irreversible, processes.

§ 133. The restriction, hitherto indispensable, that no
changes must remain in bodies outside the system is easily dis-
pensed with by including in the system all bodies that may be
affected in any way by the process considered. The proposition
then becomes: Every physical or chemical process in nature
takes place in such a way as to increase the sum of the entropies
of all the bodies taking any part in the process. In the limit,
i.e. for reversible processes, the sum of the entropies remains
unchanged. This is the most general statement of the second
law of Thermodynamics.

§ 134. As the impossibility of perpetual motion of the first
kind leads to the first law of Thermodynamics, or the principle
of the conservation of energy; so the impossibility of perpetual

other bodies. Proof : Bring the body into thermal contact with a perfect
gas, isolate the system adiabatically, and diminish the volume of the gas
by reversible compression. Heat thereby passes from the gas into the body,
and the entropy of the gas diminishes in consequence, while that of the
body increases by an equal amount. Now separate the body from the
gas. If the proposition were false, and there existed an uncompensated
entropy diminishing process, we could by means of it bring the body back
to its original smaller entropy, and therewith to its initial state. The only
outstanding change of the whole process would be the diminution of the
entropy of the perfect gas. But this contradicts § 118. The proposition is
therefore not false, but true.
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motion of the second kind has led to the second law, properly
designated as the principle of the increase of the entropy. This
principle may be presented under other forms, which possess
certain practical advantages, especially for isothermal or isopi-
estic processes. They will be mentioned in our next chapter. It
should be emphasized, however, that the form here given is the
only one of unrestricted applicability to any finite process, and
that no other universal measure of the irreversibility of processes
exists than the amount of the increase of the entropy to which
they lead. All other forms of the second law are either applicable
to infinitesimal changes only, or presuppose, when extended to
finite changes, the existence of some special condition imposed
upon the process (§ 140, etc.). The real meaning of the second
law has frequently been looked for in a “dissipation of energy.”
This view, proceeding, as it does, from the irreversible phenom-
ena of conduction and radiation of heat, presents only one side
of the question. There are irreversible processes in which the
final and initial states show exactly the same form of energy,
e.g. the diffusion of two perfect gases (§ 238), or further dilu-
tion of a dilute solution. Such processes are accompanied by
no perceptible transference of heat, nor by external work, nor
by any noticeable transformation of energy.∗ They occur only
for the reason that they lead to an appreciable increase of the

∗In reply to a criticism of this statement, I have simply to refer to
§ 108, wherein the remark is made, that, to be sure, by the introduction of
new kinds of energy, conceived ad hoc, it is possible to speak of an energy
transformation even for the cases now under discussion. There is, however,
nothing arbitrary in the statement made in the text, where the energy
appears as completely defined by § 56, but rather in the introduction of the
new kinds of energy.
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entropy. The amount of “lost work” yields a no more definite
general measure of irreversibility than does that of “dissipated
energy.” This is possible only in the case of isothermal processes
(§ 143). An exhaustive general statement of the second law can
be made only by means of the conception of the entropy.

§ 135. Clausius summed up the first law by saying that the
energy of the world remains constant; the second by saying that
the entropy of the world tends towards a maximum. Objection
has justly been raised to this form of expression. The energy
and the entropy of the world have no meaning, because such
quantities admit of no accurate definition. Nevertheless, it is
not difficult to express the characteristic feature of those pro-
positions of Clausius in such a way as to give them a meaning,
and to bring out more clearly what Clausius evidently wished
to express by them.

The energy of any system of bodies changes according to the
measure of the effects produced by external agents. It remains
constant, only, if the system be isolated. Since, strictly speak-
ing, every system is acted on by external agents—for complete
isolation cannot be realized in nature—the energy of a finite
system may be approximately, but never absolutely, constant.
Nevertheless, the more extended the system, the more negli-
gible, in general, will the external effects become, in comparison
with the magnitude of the energy of the system, and the changes
of energy of its parts (§ 55); for, while the external effects are
of the order of magnitude of the surface of the system, the in-
ternal energy is of the order of magnitude of the volume. In
very small systems (elements of volume) the opposite is the case
for the same reason, since here the energy of the system may
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be neglected in comparison with any one of the external effects.
Frequent use is made of this proposition, e.g. in establishing the
limiting conditions in the theory of the conduction of heat. In
the case here considered, it may, therefore, be said that the more
widely extended a system we assume, the more approximately,
in general, will its energy remain constant. A comparatively
small error will be committed in assuming the energy of our
solar system to be constant, a proportionately smaller one if the
system of all known fixed stars be included. In this sense an ac-
tual significance belongs to the proposition, that the energy of
an infinite system, or the energy of the world, remains constant.

The proposition regarding the increase of the entropy should
be similarly understood. If we say that the entropy of a system
increases quite regardless of all outside changes, an error will, in
general, be committed, but the more comprehensive the system,
the smaller does the proportional error become.

§ 136. In conclusion, we shall briefly discuss the question
of the possible limitations to the second law. If there exist
any such limitations—a view still held by many scientists and
philosophers—this much may be asserted, that their existence
presupposes an error in our starting-point, viz. the impossibil-
ity of perpetual motion of the second kind, or a fault in our
method of proof. From the beginning we have recognized the
legitimacy of the first of these objections, and it cannot be re-
moved by any line of argument. The second objection generally
amounts to the following. The impracticability of perpetual mo-
tion of the second kind is granted, yet its absolute impossibility
is contested, since our limited experimental appliances, suppos-
ing it were possible, would be insufficient for the realization of
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the ideal processes which the line of proof presupposes. This
position, however, proves untenable. It would be absurd to as-
sume that the validity of the second law depends in any way
on the skill of the physicist or chemist in observing or exper-
imenting. The gist of the second law has nothing to do with
experiment; the law asserts briefly that there exists in nature a
quantity which changes always in the same sense in all natural
processes. The proposition stated in this general form may be
correct or incorrect; but whichever it may be, it will remain so,
irrespective of whether thinking and measuring beings exist on
the earth or not, and whether or not, assuming they do exist,
they are able to measure the details of physical or chemical pro-
cesses more accurately by one, two, or a hundred decimal places
than we can.∗ The limitations to the law, if any, must lie in the
same province as its essential idea, in the observed Nature, and
not in the Observer. That man’s experience is called upon in the
deduction of the law is of no consequence; for that is, in fact, our
only way of arriving at a knowledge of natural law. But the law
once discovered must receive recognition of its independence, at
least in so far as Natural Law can be said to exist independent
of Mind. Should any one deny this, he would have to deny the
possibility of natural science.

The case of the first law is quite similar. To most unpreju-

∗We do not say that the second law is applicable to every single detail
of a process. Upon closer examination the matter appears to be thus.
The entropy, like temperature, pressure, and density, cannot be defined as
an absolute, continuous quantity, but as a certain average value of a large
number of single values. As long, therefore, as we regard simply one or more
single values, the entropy cannot be defined any more than the temperature
or pressure, and the second law neither applied nor proved.
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diced scientists the impossibility of perpetual motion of the first
kind is certainly the most direct of the general proofs of the prin-
ciple of energy. Nevertheless, hardly any one would now think
of making the validity of that principle depend on the degree
of accuracy of the experimental proof of that general empirical
proposition. Presumably the time will come when the principle
of the increase of the entropy will be presented without any con-
nection with experiment. Some metaphysicians may even put
it forward as being a priori valid. In the mean time, no more
effective weapon can be used by both champions and opponents
of the second law than indefatigable endeavour to follow the
real purport of this law to the utmost consequences, taking the
latter one by one to the highest court of appeal—experience.
Whatever the decision may be, lasting gain will accrue to us
from such a proceeding, since thereby we serve the chief end of
natural science—the enlargement of our stock of knowledge.



CHAPTER III.

GENERAL DEDUCTIONS.

§ 137. Our first application of the principle of the entropy
which was expressed in its most general form in the preceding
chapter, will be to Carnot’s cycle, described in detail for perfect
gases in § 90. This time, the system operated upon may be of
any character whatsoever, and chemical reactions, too, may take
place, provided they are reversible. Resuming the notation used
in § 90, we may at once state the result.

In a cyclic process, according to the first law, the heat, Q2,
given out by the hotter reservoir is equivalent to the sum of the
work done by the system, W ′ = −W , and the heat received by
the colder reservoir, Q′1 = −Q1:

Q2 = W ′ +Q′1

or
Q1 +Q2 +W = 0. (63)

According to the second law, since the process is reversible,
all bodies which show any change of state after the process,
i.e. the two heat-reservoirs only, possess the same total entropy
as before the process. The change of the entropy of the two
reservoirs is, according to (62):

Q′1
θ1

= −Q1

θ1
for the first, and − Q2

θ2
for the second, (64)

their sum:
Q1

θ1
+
Q2

θ2
= 0 (65)
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whence, by (63),

Q1 : Q2 : W = (−θ1) : θ2 : (θ1 − θ2)

as in (44), but without any assumption as to the nature of the
substance passing through the cycle of operations.

In order, therefore, to gain the mechanical work, W ′, by
means of a reversible Carnot cycle of operations with any sub-
stance between two heat-reservoirs at the temperatures θ1 and θ2
(θ2 > θ1), the quantity of heat

Q′1 =
θ1

θ2 − θ1
W ′

must pass from the hotter to the colder reservoir. In other words,
the passage of the quantity of heat Q′1 from θ2 to θ1 may be taken
advantage of to gain the mechanical work

W ′ =
θ2 − θ1
θ1

Q′1. (66)

§ 138. For an irreversible cycle, i.e. one involving any irre-
versible physical or chemical changes of the substance operated
upon, the equation of energy (63) still holds, but the equation
for the change of the entropy (65) is replaced by the inequality:

−Q1

θ1
− Q2

θ2
> 0.

Observe, however, that the expressions (64) for the change
of the entropy of the reservoirs are still correct, provided we
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assume that any changes of volume of the substances used as
reservoirs are reversible. Thus,

Q1

θ1
+
Q2

θ2
< 0 (67)

hence, from (67) and (63),

W ′ = −W = Q1 +Q2 < Q1 +
θ2
θ1
Q′1,

or

W ′ <
θ2 − θ1
θ1

Q′1.

This means that the amount of work, W ′, to be gained by means
of a cyclic process from the transference of the heat, Q′1, from
a hotter to a colder reservoir, is always smaller for an irrevers-
ible process than for a reversible one. Consequently the equa-
tion (66) represents the maximum amount of work to be gained
from any cyclic process between heat-reservoirs at the temper-
atures θ2 and θ1.

In particular, if W ′ = 0, it follows from the equation of
energy (63) that

Q2 = −Q1 = Q′1

and the inequality (67) becomes

Q2

(
1

θ2
− 1

θ1

)
< 0.

In this case the cyclic process results in the transference of
heat (Q2) from the reservoir of temperature θ2 to that of tem-
perature θ1, and the inequality means that this flow of heat is
always directed from the hotter to the colder reservoir.
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Again, a special case of this type of process is the direct
passage of heat by conduction between heat-reservoirs, without
any actual participation of the system supposed to pass through
the cycle of operations. It is seen to be an irreversible change,
since it brings about an increase of the sum of the entropies of
the two heat-reservoirs.

§ 139. We shall now apply the principle of the entropy to
any reversible or irreversible cycle with any system of bodies, in
the course of which only one heat-reservoir of constant temper-
ature θ is used. Whatever may be the nature of the process in
detail, there remains at its close no change of the entropy except
that undergone by the heat-reservoir. According to the first law,
we have

W +Q = 0.

W is the work done on the system, and Q the heat absorbed by
the system from the reservoir.

According to the second law, the change of the entropy of
the reservoir, within which only reversible changes of volume are
supposed to take place, is

−Q
θ
≥ 0

or
Q ≤ 0,

whence
W ≥ 0.

Work has been expended on the system, and heat added to the
reservoir. If, in the limit, the process be reversible, the signs of
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inequality disappear, and both the work W and the heat Q are
zero. On this proposition rests the great fertility of the second
law in its application to isothermal reversible cycles.

§ 140. We shall no longer deal with cycles, but shall con-
sider the general question of the direction in which a change
will set in, when any system in nature is given. For chemical
reactions in particular is this question of importance. It is com-
pletely answered by the second law in conjunction with the first,
for the second law contains a condition necessary for all natural
processes. Let us imagine any homogeneous or heterogeneous
system of bodies at the common temperature θ, and investig-
ate the conditions for the starting of any physical or chemical
change. According to the first law, we have for any infinitesimal
change:

dU = Q+W, (68)

where U is the total internal energy of the system, Q the heat
absorbed by the system during the process, and W the work
done on the system.

According to the second law, the change of the total entropy
of all the bodies taking part in the process is

dΦ + dΦ0 ≥ 0,

where Φ is the entropy of the system, Φ0 the entropy of the
surrounding medium (air, calorimetric liquid, walls of vessels,
etc.). Here the sign of equality holds for reversible cases, which,
it is true, should be considered as an ideal limiting case of actual
processes (§ 115).
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If we assume that all changes of volume in the surrounding
medium are reversible, we have, according to (62),

dΦ0 = −Q
θ
,

or, by (68),

dΦ0 = −dU −W
θ

.

On substituting the value of dΦ0, we have

dΦ− dU −W
θ

≥ 0, (69)

or
dU − θ dΦ ≤ W. (70)

All conclusions with regard to thermodynamic chemical changes,
hitherto drawn by different authors in different ways, culminate
in this relation (70). It cannot in general be integrated, since
the left-hand side is not, in general, a perfect differential. The
second law, then, does not lead to a general statement with
regard to finite changes of a system taken by itself unless some-
thing be known of the external conditions to which it is subject.
This was to be expected, and holds for the first law as well. To
arrive at a law governing finite changes of the system, the know-
ledge of such external conditions as will permit the integration
of the differential is indispensable. Among these the following
are singled out as worthy of note.

§ 141. Case I. Adiabatic Process.—No exchange of heat
with the surroundings being permitted, we have Q = 0, and,
by (68),

dU = W.
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Consequently, by (70),
dΦ ≥ 0.

The entropy of the system increases or remains constant, a case
which has already been sufficiently discussed.

§ 142. Case II. Isothermal Process.—The temperature
θ being kept constant, (70) passes into

d(U − θΦ) ≤ W,

i.e. the increment of the quantity (U − θΦ) is smaller than,
or, in the limit, equal to, the work done on the system. This
theorem is well adapted for application to chemical processes,
since isothermal changes play an important part in nature.

Putting
U − θΦ = F, (71)

we have, for reversible isothermal changes:

dF = W

and, on integrating,

F2 − F1 =
∑
W. (72)

For finite reversible isothermal changes the total work done on
the system is equal to the increase of F ; or, the entire work
performed by the system is equal to the decrease of F , and,
therefore, depends only on the initial and final states of the
system. Where F1 = F2, as in cyclic processes, the external
work is zero.
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The function F , thus bearing the same relation to the ex-
ternal work that the energy U does to the sum of the external
heat and work, has been called by H. v. Helmholtz the free en-
ergy (freie Energie) of the system. (It should rather be called
“free energy for isothermal processes.”) Corresponding to this,
he calls U the total energy (Gesammtenergie), and the difference
U − F = θΦ, the latent energy (gebundene Energie) of the sys-
tem. The change of the latter in reversible isothermal processes
gives the amount of the external heat absorbed. This splitting
up of total energy into free and latent energy is applicable to
isothermal processes only.

In irreversible processes, on the other hand, dF < W , and
on integrating we have

F2 − F1 <
∑
W. (73)

The free energy increases by a less amount than that which
corresponds to the work done on the system. The results for
reversible and irreversible processes may be stated thus. In ir-
reversible isothermal processes the work done on the system is
more, or the work done by the system is less, than it would be
if the same change were brought about by a reversible process,
for in that case it would be the difference of the free energies at
the beginning and end of the process (72).

Hence, any reversible transformation of the system from one
state to another yields the maximum amount of work that can
be gained by any isothermal process between those two states.
In all irreversible processes a certain amount of work is lost, viz.
the difference between the maximum work to be gained (the
decrease of the free energy) and the work actually gained.
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The fact that, in the above, irreversible as well as reversible
processes between the same initial and final states were con-
sidered, does not contradict the proposition that between two
states of a system either only reversible or only irreversible pro-
cesses are possible, if no external changes are to remain in other
bodies. In fact, the process here discussed involves such changes
in the surrounding medium; for, in order to keep the system
at constant temperature, an exchange of heat between it and
the surrounding medium must take place in one direction or the
other.

§ 143. If the work done during an isothermal process vanish,
as is practically the case in most chemical reactions, we have

∑
W = 0,

and, by (73),
F2 − F1 < 0,

i.e. the free energy decreases. The amount of this decrease may
be used as a measure of the work done by the forces (chemical
affinity) causing the process, for the same is not available for
external work.

For instance, let an aqueous solution of some non-volatile
salt be diluted isothermally, the heat of dilution being furnished
or received by a heat-reservoir according as the energy, U2, of the
diluted solution (final state) is greater or less than the sum, U1,
of the energies of the undiluted solution and the water added
(initial state). The free energy, F2, of the diluted solution, on
the other hand, is necessarily smaller than the sum, F1, of the
free energies of the undiluted solution and the water added. The
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amount of the decrease of the free energy, or the work done by
the “affinity of the solution for water” during the process of di-
lution may be measured. For this purpose, the dilution should
be performed in some reversible isothermal manner, when, ac-
cording to (72), the quantity to be measured is actually gained
in the form of external work. For instance, evaporate the wa-
ter, which is to be added, infinitely slowly under the pressure
of its saturated vapour. When it has all been changed to water
vapour, allow the latter to expand isothermally and reversibly
until its density equals that which saturated water vapour would
possess at that temperature when in contact with the solution.
Now establish lasting contact between the water vapour and the
solution, whereby the equilibrium will not be disturbed. Finally,
by isothermal compression, condense the water vapour infinitely
slowly when in direct contact with the solution. It will then be
uniformly distributed throughout the latter. Such a process, as
here described, is composed only of states of equilibrium. Hence
it is reversible, and the external work thereby gained represents
at the same time the decrease of the free energy, F2−F1, which
takes place on directly mixing the solution and the water.

As a further example, we shall take a mixture of hydrogen
and oxygen which has been exploded by means of an electric
spark. The spark acts only the secondary part of a release, its
energy being negligible in comparison with the energies obtained
by the reaction. The work of the chemical affinities in this pro-
cess is equal to the mechanical work that might be gained by
chemically combining the oxygen and hydrogen in some revers-
ible and isothermal way. Dividing this quantity by the number
of oxidized molecules of hydrogen, we obtain a measure of the
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force with which a molecule of hydrogen tends to become ox-
idized. This definition of chemical force, however, has only a
meaning in so far as it is connected with that work.

§ 144. In chemical processes the changes of the first term, U ,
of the expression for the free energy (71), frequently far surpass
those of the second, θΦ. Under such circumstances, instead
of the decrease of F , that of U , i.e. the heat effect, may be
considered as a measure of the chemical work. This leads to the
proposition that chemical reactions, in which there is no external
work, take place in such a manner as to give the greatest heat
effects (Berthelot’s principle). For high temperatures, where θ,
and for gases and dilute solutions, where Φ is large, the term θΦ
can no longer be neglected without considerable error. In these
cases, therefore, chemical changes often do take place in such a
way as to increase the total energy, i.e. with the absorption of
heat.

§ 145. It should be borne in mind that all these propositions
refer only to isothermal processes. To answer the question as to
how the free energy acts in other processes, it is only necessary
to form the differential of (71) viz.:

dF = dU − θ dΦ− Φ dθ,

and to substitute in the general relation (70). We have then

dF ≤ W − Φ dθ

for any physical or chemical process. This shows that, with
change of temperature, the relation between the external work
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and the free energy is far more complicated. This relation can-
not, in general, be used with advantage.

§ 146. We shall now compute the value of the free energy
of a perfect gas. Here, according to (35),

U = Mu = M(cvθ + const.),

and, by (52),

Φ = Mφ = M(cv log θ +
R

m
log v + const.).

Substituting in (71), we obtain

F = M{cvθ(const.− log θ)− Rθ

m
log v + const.} (74)

which contains an arbitrary linear function of θ.
For isothermal changes of the gas, we have, by § 142,

dF ≤ W,

or, by (74), since θ is const.,

dF = −MθR

m
· dv
v

= −p dV ≤ W.

If the change be reversible, the external work on the gas is W =
−p dV , but if it be irreversible, then the sign of inequality shows
that the work of compression is greater, or that of expansion
smaller, than in a reversible process.
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§ 147. Case III. Isothermal-isopiestic Process.—If,
besides the temperature θ, the external pressure p be also kept
constant, then the external work is given by the formula,

W = −p dV,

and the left-hand side of (69) becomes a complete differential:

d

(
Φ− U + pV

θ

)
≥ 0.

In this case, it may be stated that for finite changes the
function,

Φ− U + pV

θ
= Ψ, (75)

must increase, and will remain constant only in the limit when
the change is reversible.∗

§ 148. Conditions of Equilibrium.—The most general
condition of equilibrium for any system of bodies is derived from
the proposition that no change can take place in the system if
it be impossible to satisfy the condition necessary for a change.

∗Multiplying (75) by −θ, we get P. Duhem’s thermodynamic potential
at constant pressure,

U + pV − θΦ,

for which, so long as θ remains constant, the same propositions hold as for
the function Ψ. However, the equation (153) in § 211, which is important
for the dependence of the equilibrium on temperature and pressure, can be
more conveniently deduced from the function Ψ than from the thermody-
namic potential.
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Now, by (69), for any actual change of the system,

dΦ− dU −W
θ

> 0.

The sign of equality is omitted, because it refers to ideal changes
which do not actually occur in nature. Equilibrium is, therefore,
maintained if the fixed conditions imposed on the system be such
that they will permit only changes in which

δΦ− δU −W
θ

≤ 0.

Here δ is used to signify a virtual infinitely small change, in
contrast to d, which corresponds to an actual change.

§ 149. In most of the cases subsequently discussed, if any
given virtual change be compatible with the fixed conditions of
the system, its exact opposite is also, and is represented by chan-
ging the sign of all variations involved. This is true if the fixed
conditions be expressed by equations, not by inequalities. As-
suming this to be the case, if we should have, for any particular
virtual change,

δΦ− δU −W
θ

< 0,

which, by (69), would make its occurrence in nature im-
possible, its opposite would conform to the condition for actual
changes (69), and could therefore take place in nature. To en-
sure equilibrium in such cases, it is necessary, therefore, that,
for any virtual change compatible with the fixed conditions,

δΦ− δU −W
θ

= 0. (76)
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This equation contains a condition always sufficient, but, as we
have seen, not always necessary to its full extent, for the main-
tenance of equilibrium. As a matter of experience, equilibrium
will occasionally subsist when equation (76) is not fulfilled, even
though the fixed conditions permit of a change of sign of all vari-
ations. This is to say, that occasionally a certain change will not
take place in nature, though it satisfy the fixed conditions as well
as the demands of the second law. Such cases lead to the con-
clusion that in some way the setting in of a change meets with
a certain resistance, which, on account of the direction in which
it acts, has been termed inertia resistance, or passive resistance.
States of equilibrium of this description are always unstable. Of-
ten a very small disturbance, not comparable in size with the
quantities within the system, suffices to produce the change,
which under these conditions often occurs with great violence.
We have examples of this in overcooled liquids, supersaturated
vapour, supersaturated solutions, explosive substances, etc. We
shall henceforth discuss mainly the conditions of stable equilib-
rium deducible from (76).

This equation may, under certain circumstances, be ex-
pressed in the form of a condition for a maximum or minimum.
This can be done when, and only when, the conditions imposed
upon the system are such that the left-hand side of (76) repres-
ents the variation of some one function. The most important
of these cases are dealt with separately in the following para-
graphs. They correspond exactly to the propositions which we
have already deduced for special cases. From these propositions
it may at once be seen whether it is a case of a maximum or a
minimum.
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§ 150. First Case (§ 141).—If no exchange of heat take
place with the surrounding medium, the first law gives

δU = W,

hence, by (76),
δΦ = 0. (77)

Among all the states of the system which can proceed from one
another by adiabatic processes, the state of equilibrium is distin-
guished by a maximum of the entropy. Should there be several
states in which the entropy has a maximum value, each one of
them is a state of equilibrium; but if the entropy be greater in
one than in all the others, then that state represents absolutely
stable equilibrium, for it could no longer be the starting-point
of any change whatsoever.

§ 151. Second Case (§ 142).—If the temperature be kept
constant, equation (76) passes into

δ

(
Φ− U

θ

)
+
W

θ
= 0,

and, by (71),
−δF = −W.

Among all the states which the system may assume at a given
temperature, a state of equilibrium is characterized by the fact
that the free energy of the system cannot decrease without per-
forming an equivalent amount of work.

If the external work be a negligible quantity, as it is when
the volume is kept constant or in numerous chemical processes,
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then W = 0, and the condition of equilibrium becomes

δF = 0,

i.e. among the states which can proceed from one another by
isothermal processes, without the performance of external work,
the state of most stable equilibrium is distinguished by an ab-
solute minimum of the free energy.

§ 152. Third Case (§ 147).—Keeping the temperature θ
and the pressure p constant and uniform, we have

W = −p δV, (78)

and the condition of equilibrium (76) becomes

δ

(
Φ− U + pV

θ

)
= 0,

or, by (75),
δΨ = 0, (79)

i.e. at constant temperature and constant pressure, the state
of most stable equilibrium is characterized by an absolute max-
imum of the function Ψ.

We shall now proceed to consider, in succession, states of
equilibrium of various systems by means of the theorems we have
just deduced, going from simpler to more complicated cases.



PART IV.

Applications to Special States of Equilibrium.

CHAPTER I.

HOMOGENEOUS SYSTEMS.

§ 153. Let the state of a homogeneous system be determined,
as hitherto, by its mass, M ; its temperature, θ; and either its

pressure, p, or its specific volume, v =
V

M
. For the present,

besides M , let θ and v be the independent variables. Then the

pressure p, the specific energy u =
U

M
, and the specific entropy

φ =
Φ

M
are functions of θ and v, the definition of the specific

entropy (61) being

dφ =
du+ p dv

θ
=

1

θ

(
∂u

∂θ

)

v

dθ +

(
∂u

∂v

)

θ

+ p

θ
dv.

On the other hand,

dφ =

(
∂φ

∂θ

)

v

dθ +

(
∂φ

∂v

)

θ

dv.

Therefore, since dθ and dv are independent of each other,

(
∂φ

∂θ

)

v

=
1

θ

(
∂u

∂θ

)

v

(79a)
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and

(
∂φ

∂v

)

θ

=

(
∂u

∂v

)

θ

+ p

θ
.

These two equations lead to an experimental test of the second
law; for, differentiating the first with respect to v, the second
with respect to θ, we have

∂2φ

∂θ ∂v
=

1

θ
· ∂

2u

∂θ ∂v
=

∂2u

∂θ ∂v
+

(
∂p

∂θ

)

v

θ
−

(
∂u

∂v

)

θ

+ p

θ2
,

or (
∂u

∂v

)

θ

= θ

(
∂p

∂θ

)

v

− p. (80)

By this and equation (24), the above expressions for the differ-
ential coefficients of φ become:

(
∂φ

∂θ

)

v

=
cv
θ

; and

(
∂φ

∂v

)

θ

=

(
∂p

∂θ

)

v

. (81)

§ 154. Equation (80), together with (28) of the first law,
gives the relation:

cp − cv = θ

(
∂p

∂θ

)

v

·
(
∂v

∂θ

)

p

, (82)

which is useful either as a test of the second law or for the
calculation of cv when cp is given. But since in many cases



homogeneous systems. 144

(
∂p

∂θ

)

v

cannot be directly measured, it is better to introduce

the relation (6), and then

cp − cv = −θ
(
∂p

∂v

)

θ

·
(
∂v

∂θ

)2

p

. (83)

As

(
∂p

∂v

)

θ

is necessarily negative, cp is always greater than cv,

except in the limiting case, when the coefficient of expansion is
= 0, as in the case of water at 4◦ C.; then cp − cv = 0.

As an example, we may calculate the specific heat at constant
volume, cv, of mercury at 0◦ C. from the following data:

cp = 0.0333; θ = 273◦;(
∂p

∂v

)

θ

= − 1014000

0.00000295 · v
,

where the denominator is the coefficient of compressibility in at-
mospheres (§ 15); the numerator, the pressure of an atmosphere

in absolute units (§ 17); v =
1

13.6
, the volume of 1 gr. of mer-

cury at 0◦ C.;

(
∂v

∂p

)

p

= 0.0001812 · v, the coefficient of thermal

expansion (§ 15).
To obtain cv in calories, it is necessary to divide by the mech-

anical equivalent of heat, 419 × 105 (§ 61). Thus we obtain
from (83)

cp − cv =
273× 1014000× 0.00018122

0.00000295× 13.6× 419× 105
= 0.0054,
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whence, from the above value for cp,

cv = 0.0279.

§ 155. This method of calculating the difference of the spe-
cific heats cp − cv applicable to any substance, discloses at the
same time the order of magnitude of the different influences to
which this quantity is subject. According to equation (28) of
the first law, the difference of the specific heats is

cp − cv =

{(
∂u

∂v

)

θ

+ p

}(
∂v

∂θ

)

p

.

The two terms of this expression,

(
∂u

∂v

)

θ

(
∂v

∂θ

)

p

and p

(
∂v

∂θ

)

p

,

depend on the rate of change of the energy with the volume, and
on the external work performed by the expansion respectively.
In order to find which of these two terms has the greater influ-
ence on the quantity cp − cv, we shall find the ratio of the first
to the second:

1

p
·
(
∂u

∂v

)

θ

,

or, by (80),
θ

p
·
(
∂p

∂θ

)

v

− 1, (84)

or by (6),

−θ
p
·
(
∂v

∂θ

)

p

·
(
∂p

∂v

)

θ

− 1.
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A glance at the tables of the coefficients of thermal expansion
and of the compressibility of solids and liquids shows that, in
general, the first term of this expression is a large number, mak-
ing the second, −1, a negligible quantity. For mercury at 0◦,
e.g., the above data give the first term to be

273× 0.0001812

0.00000295
= 16800.

Water at 4◦ C. is an exception.
It follows that, for solids and liquids, the difference cp−cv de-

pends rather on the relation between the energy and the volume
than on the external work of expansion. For perfect gases the
reverse is the case, since the internal energy is independent of
the volume, i.e.— (

∂u

∂v

)

θ

= 0.

During expansion, therefore, the influence of the internal energy
vanishes in comparison with that of the external work; in fact,
the expression (84) vanishes for the characteristic equation of
a perfect gas. With ordinary gases, however, both the internal
energy and the external work must be considered.

§ 156. The sum of both these influences, i.e. the whole ex-
pression cp−cv, may be said to have a small value for most solids

and liquids; thus the ratio
cp
cv

= γ is but slightly greater than

unity. This means that in solids and liquids the energy depends
far more on the temperature than on the volume. For gases,
γ is large; and, in fact, the fewer the number of atoms in a mo-
lecule of the gas, the larger does it become. Hydrogen, oxygen,
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and most gases with diatomic molecules have γ = 1.41 (§ 87).
The largest value of γ ever observed is that found by Kundt and
Warburg for the monatomic vapour of mercury, viz. 1.666.

§ 157. For many applications of the second law it is con-
venient to introduce p instead of v as an independent variable.
We have, by (61),

dφ =
du+ p dv

θ

=

{(
∂u

∂θ

)

p

+ p

(
∂v

∂θ

)

p

}
dθ

θ
+

{(
∂u

∂p

)

θ

+ p

(
∂v

∂p

)

θ

}
dp

θ
.

On the other hand,

dφ =

(
∂φ

∂θ

)

p

dθ +

(
∂φ

∂p

)

θ

dp,

whence,

(
∂φ

∂θ

)

p

=

(
∂u

∂θ

)

p

+ p

(
∂v

∂θ

)

p

θ

and

(
∂φ

∂p

)

θ

=

(
∂u

∂p

)

θ

+ p

(
∂v

∂p

)

θ

θ
.

Differentiating the first of these with respect to p, the second
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with respect to θ, we get

∂2φ

∂θ ∂p
=

∂2u

∂θ ∂p
+ p

∂2v

∂θ ∂p
+

(
∂v

∂θ

)

p

θ

=

∂2u

∂θ ∂p
+ p

∂2v

∂θ ∂p

θ
−

(
∂u

∂p

)

θ

+ p

(
∂v

∂p

)

θ

θ2
,

whence (
∂u

∂p

)

θ

= −θ
(
∂v

∂θ

)

p

− p
(
∂v

∂p

)

θ

.

The differential coefficients of φ become, then, by (26),

(
∂φ

∂θ

)

p

=
cp
θ

; and

(
∂φ

∂p

)

θ

= −
(
∂v

∂θ

)

p

.

Finally, differentiating the first of these with respect to p, the
second with respect to θ, and equating, we have

(
∂cp
∂p

)

θ

= −θ
(
∂2v

∂θ2

)

p

. (85)

This equation contains only quantities that can be directly meas-
ured, and establishes a relation between the rate of change of the
coefficient of thermal expansion of the substance with temper-
ature (i.e. the deviation from Gay-Lussac’s law), and the rate
of change of the specific heat with pressure.

§ 158. By means of the relations furnished by the second
law we may also draw a further conclusion from Thomson and
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Joule’s experiments (§ 70), in which a gas was slowly pressed
through a tube plugged with cotton wool. The interpretation
in § 70 was confined to their bearing on the properties of perfect
gases. It has been mentioned that the characteristic feature of
these experiments consists in giving to a gas—without adding
or withdrawing heat∗—an increase of volume, V2−V1, or v2−v1
per unit mass, while the external work done per unit mass is
represented by

p1v1 − p2v2 = W.

This expression vanishes in the case of perfect gases, since then
the temperature remains constant. In the case of actual gases
we may put

p1 = p, p2 = p+ ∆p (∆p < 0)

v1 = v, v2 = v + ∆v (∆v > 0)

whence
W = −∆(pv),

and by the first law, since Q = 0,

∆u = W +Q = −∆(pv).

For the sake of simplicity we shall assume ∆p and ∆v to be
small, and we may then write the above equation:

(
∂u

∂θ

)

v

∆θ +

(
∂u

∂v

)

θ

∆v = −v∆p− p∆v

∗Whether this condition is actually fulfilled may be ascertained by
measurements in the medium surrounding the tube through which the gas
flows.
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or, by (24), (82), and (80),

{
cp − θ

(
∂p

∂θ

)

v

(
∂v

∂θ

)

p

}
∆θ + θ

(
∂p

∂θ

)

v

∆v = −v∆p,

and, by (6)

cp ∆θ = −v∆p+ θ

(
∂v

∂θ

)

p

·
{(

∂p

∂θ

)

v

∆θ +

(
∂p

∂v

)

θ

∆v

}

= −v∆p+ θ

(
∂v

∂θ

)

p

∆p,

∴ ∆θ =

θ

(
∂v

∂θ

)

p

− v

cp
∆p. (86)

By means of this simple equation, the change of temperature
(∆θ) of the gas in Thomson and Joule’s experiments, for a dif-
ference of pressure ∆p, may be found from its specific heat, cp,
and its deviation from Gay-Lussac’s law. If, under constant
pressure, v were proportional to θ, as in Gay-Lussac’s law, then,
by equation (86), ∆θ = 0, as is really the case for perfect gases.

§ 159. Thomson and Joule embraced the results of their
observations in the formula

∆θ =
α

θ2
∆p,

where α is a constant. If we express p in atmospheres, we have,
for air,

α = 0.276× (273)2.
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No doubt the formula is only approximate. Within the region
of its validity we get, from (86),

θ

(
∂v

∂θ

)

p

− v = cp
α

θ2
(87)

and, differentiating with respect to θ,

θ

(
∂2v

∂θ2

)

p

=
α

θ2

(
∂cp
∂θ

)

p

− 2αcp
θ3

whence, by the relation (85),
(
∂cp
∂p

)

θ

+
α

θ2

(
∂cp
∂θ

)

p

− 2αcp
θ3

= 0.

The general solution of this differential equation is

cp = θ2 · f(θ3 − 3αp),

where f denotes an arbitrary function of its argument, θ3−3αp.
If we now assume that, for small values of p, the gas, at

any temperature, approaches indefinitely near the ideal state,
then, when p = 0, cp becomes a constant = c

(0)
p (for air, c

(0)
p =

0.238 calorie). Hence, generally,

cp = c(0)p θ2(θ3 − 3αp)−
2
3 ,

or

cp =
c
(0)
p

(
1− 3αp

θ3

)2
3

. (88)
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This expression for cp will serve further to determine v in terms
of θ and p. It follows from (87) that

θ2
∂

∂θ

(v
θ

)
p

=
αcp
θ2

=
αc

(0)
p

(θ3 − 3αp)
2
3

,

whence

v

θ
= αc(0)p

∫
dθ

θ4
(

1− 3αp

θ3

)2
3

,

or

v =
c
(0)
p θ

3p

(
3

√
1− 3αp

θ3
+ β

)
. (89)

This is the characteristic equation of the gas, and β, the constant
of integration, may be determined from its density at 0◦ C. and
atmospheric pressure. Equations (88) and (89), like Thomson
and Joule’s formula, are valid only within certain limits. It is,
however, of theoretical interest to see how the different relations
necessarily follow from one another.

§ 160. A further, theoretically important application of the
second law is the determination of the absolute temperature of
a substance by a method independent of the deviations of ac-
tual gases from the ideal state. In § 4 we defined temperature by
means of the gas thermometer, but had to confine that definition
to the cases in which the readings of the different gas thermomet-
ers (hydrogen, air, etc.) agree as nearly as the desired accuracy of
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the result requires. For all other cases (including mean temper-
atures, when a high degree of accuracy is desired) we postponed
the definition of absolute temperature. Equation (80) enables
us to give an exact definition of absolute temperature, entirely
independent of the behaviour of special substances.

Given the temperature readings, t, of any arbitrary ther-
mometer (mercury-thermometer, or the scale deflection of a
thermo-element, or of a bolometer), our problem is to reduce
the thermometer to an absolute one, or to express the absolute
temperature θ as a function of t. We may by direct measure-
ment find how the behaviour of some appropriate substance, e.g.
a gas, depends on t and either v or p. Introducing, then, t and
v as the independent variables in (80) instead of θ and v, we
obtain (

∂u

∂v

)

t

= θ

(
∂p

∂t

)

v

· dt
dθ
− p,

where

(
∂u

∂v

)

t

, p, and

(
∂p

∂t

)

v

represent functions of t and v,

which can be experimentally determined. The equation can then
be integrated thus:

∫
dθ

θ
=

∫ (
∂p

∂t

)

v

dt

(
∂u

∂v

)

t

+ p

.

If we further stipulate that at the freezing-point of water, where
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t = t0, θ = θ0 = 273, then,

log
θ

θ0
=

t∫

t0

(
∂p

∂t

)

v

dt

(
∂u

∂v

)

t

+ p

.

This completely determines θ as a function of t. It is evident
that the volume, v, no longer enters into the expression under
the sign of integration.

§ 161. The numerator of this expression may be found dir-
ectly from the characteristic equation of the substance. The de-
nominator, however, depends on the amount of heat which the
substance absorbs during isothermal reversible expansion. For,
by (22) of the first law, the ratio of the heat absorbed during
isothermal reversible expansion to the change of volume is

( q
dv

)
t

=

(
∂u

dv

)

t

+ p.

§ 162. Instead of measuring the quantity of heat absorbed
during isothermal expansion, it may be more convenient, for the
determination of the absolute temperature, to experiment on the
changes of temperature of a slowly escaping gas, according to
the method of Thomson and Joule. If we introduce t (of § 160)
instead of θ into equation (86), which represents the theory of
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those experiments on the absolute temperature scale, we have

∆θ =
dθ

dt
∆t,

(
∂v

∂θ

)

p

=

(
∂v

∂t

)

p

· dt
dθ
,

cp =
( q
dθ

)
p

=
( q
dt

)
p
· dt
dθ

= c′p
dt

dθ
,

where c′p is the specific heat at constant pressure, determined by
a t thermometer. Consequently, by (86),

∆t =

θ

(
∂v

∂t

)

p

· dt
dθ
− v

c′p
∆p

and again, by integration,

log
θ

θ0
=

t∫

t0

(
δv

δt

)

p

dt

v + c′p
∆t

∆p

= J. (90)

The expression to be integrated again contains quantities which
may be measured directly with comparative ease.

§ 163. The stipulation of § 160, that, at the freezing-point
of water, θ = θ0 = 273, implies the knowledge of the coefficient
of expansion, α, of perfect gases. Strictly speaking, however, all
gases show at all temperatures deviations from the behaviour of
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perfect gases, and disagree with one another. To rid ourselves of
any definite assumption about α, we return to our original defini-
tion of temperature, viz. that the difference between the absolute
temperature of water boiling under atmospheric pressure (θ1),
and that of water freezing under the same pressure (θ0), shall
be

θ1 − θ0 = 100. (91)

Now, if t1 be the boiling-point of water, measured by means
of a t thermometer, then, by (90),

log
θ1
θ0

=

t1∫

t0

(
∂v

∂t

)

p

dt

v + c′p
∆t

∆p

= J1, (92)

and, eliminating θ0 and θ1 from (90), (91), and (92), we find the
absolute temperature:

θ =
100eJ

eJ1 − 1
. (93)

From this we obtain the coefficient of thermal expansion of a
perfect gas, independently of any gas thermometer,

α =
1

θ0
=
eJ1 − 1

100
. (94)

Since, in both J and J1, the expression to be integrated
depends necessarily on t only, it is sufficient for the calculation of
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the value of the integral to experiment at different temperatures
under some simplifying condition, as, for instance, always at the
same pressure (atmospheric pressure).

§ 164. The formula may be still further simplified by using
as thermometric substance in the t thermometer the same gas
as that on which Thomson and Joule’s experiments are being
performed. The coefficient of expansion, α′, referred to temper-
ature t, is then a constant, and if, as is usual, we put t0 = 0,
and t1 = 100,

v = v0(1 + α′t),

v0 being the specific volume at the melting-point of ice under
atmospheric pressure. Also

(
∂v

∂t

)

p

= α′v0.

Hence, by (90),

J =

t∫

0

α′ dt

1 + α′t+
c′p
v0
· ∆t

∆p

,

and, by (92),

J1 =

100∫

0

α′ dt

1 + α′t+
c′p
v0
· ∆t

∆p

.
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In the case of an almost perfect gas (e.g. air), ∆t is small, and

the term
c′p
v0
·∆t
∆p

acts merely as a correction term, and, therefore,

no great degree of accuracy is required in the determination of
c′p and v0. For a perfect gas we should have ∆t = 0, and, from
the last two equations,

J = log(1 + α′t), J1 = log(1 + 100α′);

therefore, by (93),

θ = t+
1

α′
,

and, by (94),

α =
1

θ0
= α′,

as it should be.
As soon as accurate measurement of even a single substance

has determined θ as a function of t, the question regarding the
value of the absolute temperature may be considered as solved
for all cases.

The absolute temperature may be determined not only by
experiments on homogeneous substances, but also from the the-
ory of heterogeneous substances (cf. § 177).



CHAPTER II.

SYSTEM IN DIFFERENT STATES OF AGGREGATION.

§ 165. We shall discuss in this chapter the equilibrium of a
system which may consist of solid, liquid, and gaseous portions.
We assume that the state of each of these portions is fully de-
termined by mass, temperature, and volume; or, in other words,
that the system is formed of but one independent constituent
(§ 198). For this it is not necessary that any portion of the sys-
tem should be chemically homogeneous. Indeed, the question
with regard to the chemical homogeneity cannot, in general, be
completely answered (§ 92). It is still very uncertain whether the
molecules of liquid water are the same as those of ice. In fact,
the anomalous properties of water in the neighbourhood of its
freezing-point make it probable that even in the liquid state its
molecules are of different kinds. The decision of such questions
has no bearing on the investigations of this chapter. The system
may even consist of a mixture of substances in any proportion;
that is, it may be a solution or an alloy. What we assume is
only this: that the state of each of its homogeneous portions is
quite definite when the temperature θ and the specific volume v
are definitely given, and that, if the system consists of different
substances, their proportion is the same in all portions of the
system. We may now enunciate our problem in the following
manner:—

Let us imagine a substance of given total mass, M , enclosed
in a receptacle of volume, V , and the energy, U , added to it by
heat-conduction. If the system be now isolated and left to itself,
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M , V , and U will remain constant, while the entropy, Φ, will
increase. We shall now investigate the state or states of equilib-
rium which the system may assume, finding at the same time
the conditions of its stability or instability. This investigation
may be completely carried through by means of the proposi-
tion expressed in equation (77), that of all the states that may
adiabatically arise from one another, the most stable state of
equilibrium is characterized by an absolute maximum of the en-
tropy. The entropy may in general, however, as we shall see,
assume several relative maxima, under the given external con-
ditions. Each maximum, which is not the absolute one, will
correspond to a more or less unstable equilibrium. The system
in a state of this kind (e.g. as supersaturated vapour) may occa-
sionally, upon appropriate, very slight disturbances, undergo a
finite change, and pass into another state of equilibrium, which
necessarily corresponds to a greater value of the entropy.

§ 166. We have now to find, first of all, the states in which
the entropy Φ becomes a maximum. The most general assump-
tion regarding the state of the system is that it consists of a
solid, a liquid, and a gaseous portion. Denoting the masses of
these portions by M1, M2, M3, but leaving open, for the present,
the question as to which particular portion each suffix refers, we
have for the entire mass of the system M1 + M2 + M3 = M .
All the quantities are positive, but some may be zero. Further,
since the state under discussion is to be one of equilibrium, each
portion of the system, also when taken alone, must be in equilib-
rium, and therefore of uniform temperature and density. To each
of them, therefore, we may apply the propositions which were
deduced in the preceding chapter for homogeneous substances.
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If v1, v2, v3, denote the specific volumes, the given volume of the
system is

M1v1 +M2v2 +M3v3 = V.

Similarly, the given energy is

M1u1 +M2u2 +M3u3 = U,

where u1, u2, u3 denote the specific energies of the portions.
These three equations represent the given external condi-

tions.

§ 167. For the entropy of the system we have

Φ = M1φ1 +M2φ2 +M3φ3,

φ1, φ2, φ3 being the specific entropies.
For an infinitesimal change of state this equation gives

δΦ =
∑
M1 δφ1 +

∑
φ1 δM1.

Since, by (61), we have, in general,

δφ =
δu+ p δv

θ
.

we obtain

δΦ =
∑M1 δu1

θ1
+
∑M1p1 δv1

θ1
+
∑
φ1 δM1. (95)

These variations are not all independent of one another. In
fact, from the equations of the imposed (external) conditions, it
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follows that
∑
δM1 = 0,∑

δM1 δv1 +
∑
v1 δM1 = 0,∑

δM1 δu1 +
∑
u1 δM1 = 0.





(96)

With the help of these equations we must eliminate from (95)
any three variations, in order that it may contain only independ-
ent variations. If we substitute in (95), for instance, the values
for δM2, δv2, and δu2 taken from (96), the equation for δΦ be-
comes

δΦ =

(
1

θ1
− 1

θ2

)
M1 δu1 −

(
1

θ2
− 1

θ3

)
M3 δu3

+

(
p1
θ1
− p2
θ2

)
M1 δv1 −

(
p2
θ2
− p3
θ3

)
M3 δv3

+

(
φ1 − φ2 −

u1 − u2
θ2

− p2(v1 − v2)
θ2

)
δM1

−
(
φ2 − φ3 −

u2 − u3
θ2

− p2(v2 − v3)
θ2

)
δM3.





(97)

Since the six variations occurring in this expression are now
independent of one another, it is necessary that each of their six
coefficients should vanish, in order that δΦ may be zero for all
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changes of state. Therefore

θ1 = θ2 = θ3(= θ),

p1 = p2 = p3,

φ1 − φ2 =
(u1 − u2) + p1(v1 − v2)

θ
,

φ2 − φ3 =
(u2 − u3) + p2(v2 − v3)

θ
.





(98)

These six equations represent necessary properties of any state,
which corresponds to a maximum value of the entropy, i.e. of
any state of equilibrium. As the first four refer to equality of
temperature and pressure, the main interest centres in the last
two, which contain the thermodynamical theory of fusion, evap-
oration, and sublimation.

§ 168. These two equations may be considerably simplified
by substituting the value of the specific entropy φ, which, as
well as u and p, is here considered as a function of θ and v. For,
since (61) gives, in general,

dφ =
du+ p dv

θ
,

we get, by integration,

φ1 − φ2 =

∫ 1

2

du+ p dv

θ
,

where the upper limit of the integral is characterized by the
values θ1, v1, the lower by θ2, v2. The path of integration is
arbitrary, and does not influence the value of φ1 − φ2. Since,
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now, θ1 = θ2 = θ (by (98)), we may select an isothermal path of
integration (θ = const.). This gives

φ1 − φ2 =
u1 − u2

θ
+

1

θ

∫ v1

v2

p dv.

The integration is to be taken along an isotherm, since p is
a known function of θ and v determined by the characteristic
equation of the substance. Substituting the value of φ1 − φ2 in
the equations (98), we have the relations:

∫ v1

v2

p dv = p1(v1 − v2),
∫ v2

v3

p dv = p2(v2 − v3),

to which we add p1 = p2 = p3.





(99)

With the four unknowns θ, v1, v2, v3, we have four equations
which the state of equilibrium must satisfy. The constants which
occur in these equations depend obviously only on the chemical
nature of the substance, and in no way on the given values of the
mass, M , the volume, V , and the energy, U , of the system. The
equations (99) might therefore be called the system’s internal or
intrinsic conditions of equilibrium, while those of § 166 represent
the external conditions imposed on the system.

§ 169. Before discussing the values which the equations (99)
give to the unknowns, we shall investigate generally whether,
and under what condition, they lead to a maximum value of
the entropy and not to a minimum value. It is necessary, for
this purpose, to find the value of δ2Φ. If this be negative for
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all virtual changes, then the state considered is certainly one of
maximum entropy.

From the expression for δΦ (97) we obtain δ2Φ, which may be
greatly simplified with the help of the equations (98). The equa-
tions of the imposed external conditions, and the equations (96)
further simplify the result, and we obtain, finally,

δ2Φ = −
∑M1 δφ1 δθ1

θ1
+
∑M1 δp1 δv1

θ1
.

This may be written

θ δ2Φ = −
∑
M1(δφ1 δθ1 − δp1 δv1).

To reduce all variations to those of the independent variables,
θ and v, we may write, according to (81),

δφ =

(
∂φ

∂θ

)

v

δθ +

(
∂φ

∂v

)

θ

δv =
cv
θ
δθ +

(
∂p

∂θ

)

v

δv

and

δp =

(
∂p

∂θ

)

v

δθ +

(
∂p

∂v

)

θ

δv,

∴ θ δ2Φ = −
∑
M1

(
(cv)1
θ

δθ21 −
(
∂p1
∂v

)

θ

δv21

)
. (100)

Obviously, if the quantities (cv)1, (cv)2, (cv)3 be all positive,

and the quantities

(
∂p1
∂v

)

θ

, . . . all negative, δ2Φ is negative in

all cases, and Φ is really a maximum, and the corresponding
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state is a state of equilibrium. Since cv is the specific heat at
constant volume, and therefore always positive, the condition

of equilibrium depends on whether

(
∂p

∂v

)

θ

is negative for all

three portions of the system or not. In the latter case there is
no equilibrium. Experience immediately shows, however, that

in any state of equilibrium
∂p

∂v
is negative, since the pressure,

whether positive or negative, and the volume always change in
opposite directions. A glance at the graphical representation
of p, as an isothermal function of v (Fig. 1, § 26), shows that

there are certain states of the system in which
∂p

∂v
is positive.

These, however, can never be states of equilibrium, and are,
therefore, not accessible to direct observation. If, on the other

hand,
∂p

∂v
be negative, it is a state of equilibrium, yet it need

not be stable; for another state of equilibrium may be found to
exist which corresponds to a greater value of the entropy.

We shall now discuss the values of the unknowns, θ, v1, v2, v3,
which represent solutions of the conditions of equilibrium (98).
Several such systems may be found. Thereafter, we shall deal
(beginning at § 189) with the further question as to which of
the different solutions in each case represents the most stable
equilibrium under the given external conditions; i.e. which one
leads to the largest value of the entropy of the system.

§ 170. First Solution.—If we put, in the first place,

v1 = v2 = v3(= v)

all the equations (98) are satisfied, for, since the temperature is
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common to all three portions of the system, their states become
absolutely identical. The entire system is, therefore, homogen-
eous. The state of the system is determined by the equations
of § 166, which give the imposed conditions. In this case they
are

M1 +M2 +M3 = M,

v(M1 +M2 +M3) = V,

u(M1 +M2 +M3) = U,

∴ v =
V

M
and u =

U

M
.

From v and u, θ may be found, since u was assumed to be a
known function of θ and v.

This solution has always a definite meaning; but, as we saw
in equation (100), it represents a state of equilibrium only when
∂p

∂v
is negative. If this be the case, then, the equilibrium is stable

or unstable, according as under the external conditions there
exists a state of greater entropy or not. This will be discussed
later.

§ 171. Second Solution.—If, in the second case, we put

v1 ≷ v2, v2 = v3,

the states 2 and 3 coincide, and the equations (98) reduce to

p1 = p2,

φ1 − φ2 =
u1 − u2 + p1(v1 − v2)

θ
,



 (101)
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or, instead of the second of these equations,
∫ v1

v2

p dv = p1(v1 − v2). (102)

In this case two states of the system coexist; for instance, the
vapour and the liquid. The equations (101) contain three un-
knowns, θ, v1, v2; and hence may serve to express v1 and v2,
consequently also the pressure p1 = p2, and the specific energies
u1 and u2, as definite functions of the temperature θ. The in-
ternal state of two heterogeneous portions of the same substance
in contact with one another is, therefore, completely determined
by the temperature. The temperature, as well as the masses of
the two portions, may be found from the imposed conditions
(§ 166), which are, in this case,

M1 + (M2 +M3) = M,

M1v1 + (M2 +M3)v2 = V,

M1u1 + (M2 +M3)u2 = U.





(103)

These equations serve for the determination of the three last
unknowns, θ, M1, and M2 + M3. This completely determines
the physical state, for, in the case of the masses M2 and M3, it
is obviously sufficient to know their sum. Of course, the result
can only bear a physical interpretation if both M1 and M2 +M3

have positive values.

§ 172. An examination of equation (102) shows that it can
be satisfied only if the pressure, p, which is known to have the
same value (p1 = p2) for both limits of the integral, assume
between the limits values which are partly larger and partly
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smaller than p1. Some of these, then, must correspond to un-
stable states (§ 169), since in certain places p and v increase

simultaneously

(
∂p

∂v
> 0

)
. The equation admits of a simple

geometrical interpretation with the help of the above-mentioned
graphical representation of the characteristic equation by iso-

therms (Fig. 1, § 26). For the integral

∫ 1

2

p dv is represented by

the area bounded by the isotherm, the axis of abscissæ, and the
ordinates at v1 and v2, while the product p1(v1− v2) is the rect-
angle formed by the same ordinates (p1 = p2), and the length
(v1−v2). We learn, therefore, from equation (102) that in every
isotherm the pressure, under which two states of aggregation of
the substance may be kept in lasting contact, is represented by
the ordinate of the straight line parallel to the axis of abscissæ,
which intercepts equal areas on both sides of the isotherm. Such
a line is represented by ABC in Fig. 1. We are thus enabled to
deduce directly from the characteristic equation for homogen-
eous, stable and unstable, states the functional relation between
the pressure, the density of the saturated vapour and of the
liquid in contact with it, and the temperature.

Taking Clausius’ equation (12) as an empirical expression of
the facts, we have, for the specific volume v1 of the saturated
vapour, and v2 of the liquid in contact with it, the two conditions

Rθ

v1 − a
− c

θ(v1 + b)2
=

Rθ

v2 − a
− c

θ(v2 + b)2
,
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and, from (102),

Rθ log
v1 − a
v2 − a

− c

θ

(
1

v2 + b
− 1

v1 + b

)

= (v1 − v2)
(

Rθ

v1 − a
− c

θ(v1 + b)2

)
.

By means of these v1, v2 and p1 = p2 may be expressed as
functions of θ, or, still more conveniently, v1, v2, p1, and θ as
functions of some appropriately selected independent variable.

With Clausius’ values of the constants for carbon dioxide
(§ 25), this calculation furnishes results which show a satis-
factory agreement with Andrews’ observations. According to
Thiesen, however, Clausius’ equation is by no means the gen-
eral form of the characteristic equation.

§ 173. We shall now follow the interpretation of the equa-
tion (101) in other directions. If we put, for shortness,

u− θφ = f (104)

(free energy per unit mass, by equation (71)), the equa-
tions (101) become, simply,

p1 = p2, (105)

f2 − f1 = p1(v1 − v2). (106)

The function f satisfies the following simple conditions.
By (104),

(
∂f

∂θ

)

v

=

(
∂u

∂θ

)

v

− θ
(
∂φ

∂θ

)

v

− φ.
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By (79a),

(
∂f

∂θ

)

v

= −φ. (107)

Also, by (104),

(
∂f

∂v

)

θ

=

(
∂u

∂v

)

θ

− θ
(
∂φ

∂v

)

θ

and, by (80) and (81),

(
∂f

∂v

)

θ

= −p. (108)

The conditions of equilibrium for two states of aggregation in
mutual contact hold for the three possible combinations of the
solid and liquid, liquid and gaseous, gaseous and solid states. In
order to fix our ideas, however, we shall discuss that solution of
those equations which corresponds to the contact of a liquid with
its vapour. Denoting the vapour by the subscript 1, the liquid
by 2, v1 is then the specific volume of the saturated vapour at
the temperature θ; p1 = p2, its pressure; v2 the specific volume
of the liquid with which it is in contact. All these quantities,
then, are functions of the temperature only, which agrees with
experience.

§ 174. Further theorems may be arrived at by the differen-
tiation of the conditions of equilibrium with respect to θ. Since
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all variables now depend only on θ, we shall use
d

dθ
to indic-

ate this total differentiation, while partial differentiation with

regard to θ at constant v will be expressed, as hitherto, by
∂

∂θ
.

Equations (105) and (106), thus differentiated, give

dp1
dθ

=
dp2
dθ

and
df2
dθ
− df1
dθ

= (v1 − v2)
dp1
dθ

+ p1

(
dv1
dθ
− dv2

dθ

)
.

But, by (107) and (108), we have

df2
dθ
− df1
dθ

=

(
∂f2
∂θ

)

v

+

(
∂f2
∂v

)

θ

· dv2
dθ
−
(
∂f1
∂θ

)

v

−
(
∂f1
∂v

)

θ

· dv1
dθ

= −φ2 − p2
dv2
dθ

+ φ1 + p1
dv1
dθ

,

whence, by substitution,

φ1 − φ2 = (v1 − v2)
dp1
dθ

,

or, finally, by (101),

(u1 − u2) + p1(v1 − v2) = θ(v1 − v2)
dp1
dθ

. (109)

Here the left-hand side of the equation, according to equa-
tion (17) of the first law, represents the heat of vaporization, L,
of the liquid. It is the heat which must be added to unit mass of
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the liquid, in order to completely change it to vapour under the
constant pressure of its saturated vapour. For the corresponding
change of energy is u1 − u2, and the external work performed,
here negative, amounts to

W = −p1(v1 − v2)
∴ L = u1 − u2 + p1(v1 − v2), (110)

whence

L = θ(v1 − v2). (111)

This equation, deduced by Clapeyron from Carnot’s theory, but
first rigorously proved by Clausius, may be used for the determ-
ination of the heat of vaporization at any temperature, if we
know the specific volumes of the saturated vapour and the li-
quid, as well as the relation between the pressure of the saturated
vapour and the temperature. This formula has been verified by
experiment in a large number of cases.

§ 175. As an example, we shall calculate the heat of va-
porization of water at 100◦ C., i.e. under atmospheric pressure,
from the following data:—

θ = 273 + 100 = 373.

v1 = 1658 (volume of 1 gr. of saturated water
vapour at 100◦ in cm.3, according to Wüllner).

v2 = 1 (volume of 1 gr. of water at 100◦ in cm.3).

dp1
dθ

is found from the experiments of Regnault. Saturated water

vapour at 100◦ C. gave an increase of pressure of 27.2 mm. of
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mercury for a rise of 1◦ C. In absolute units, by § 7,

dp1
dθ

=
27.2

760
× 1013650.

Thus, the required latent heat of vaporization is

L =
373× 1657× 27.2× 1013650

760× 419× 105
= 535 cal.

By direct observation Regnault found the heat of vaporization
of water at 100◦ C. to be 536.

§ 176. As equation (110) shows, part of the heat of vapor-
ization, L, corresponds to an increase of energy, and part to
external work. To find the relation between these two it is most
convenient to find the ratio of the external work to the latent
heat of vaporization, viz.

p1(v1 − v2)
L

=
p1

θ
dp1
dθ

.

In the above case p = 760 mm., θ = 373,
dp

dθ
= 27.2 mm., and

therefore,
p1(v1 − v2)

L
=

760

373× 27.2
= 0.075.

This shows that the external work forms only a small part of
the value of the latent heat of vaporization.

§ 177. Equation (111) also leads to a method of calculating
the absolute temperature θ, when the latent heat of vaporiza-
tion, L, as well as the pressure and the density of the saturated
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vapour and the liquid, have been determined by experiment in
terms of any scale of temperature t (§ 160). We have

L = θ(v1 − v2)
dp1
dt
· dt
dθ
,

∴ log θ =

∫
v1 − v2
L

· dp1
dt

dt,

and therefore θ may be determined as a function of t. It is
obvious that any equation between measurable quantities, de-
duced from the second law, may be utilized for a determination
of the absolute temperature. The question as to which of those
methods deserves preference is to be decided by the degree of
accuracy to be obtained in the actual measurements.

§ 178. A simple approximation formula, which in many
cases gives good, though in some, only fair results, may be ob-
tained by neglecting in the equation (111) the specific volume
of the liquid, v2, in comparison with that of the vapour, v1, and
assuming for the vapour the characteristic equation of a perfect
gas. Then, by (14),

v1 =
Rθ

mp1
,

where R is the absolute gas constant, and m the molecular
weight of the vapour. Equation (111) then becomes

L =
R

m
· θ

2

p1
· dp1
dθ

. (112)

For water at 100◦ C. we have R = 1.971; m = H2O = 18;

θ = 373; p1 = 760 mm.;
dp1
dθ

= 27.2 mm. Hence the latent heat
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of vaporization is

L =
1.971× 3732 × 27.2

18× 760
= 545 cal.

This value is somewhat large (§ 175). The cause of this lies in
the fact that the volume of saturated water vapour at 100◦ is
in reality smaller than that calculated from the characteristic
equation of a perfect gas of molecular weight 18. But, for this
very reason, accurate measurement of the heat of vaporization
may serve as a means of estimating from the second law the
amount by which the density of a vapour deviates from the ideal
value.

Another kind of approximation formula, valid within the
same limits, is found by substituting in (109) the value of the
specific energy u1 = cvθ + const., which, by (39), holds for
perfect gases. We may put the specific energy of the liquid
u2 = c2θ + const., if we assume its specific heat, c2, to be con-
stant, and neglect the external work. It then follows from (109)
that

(cv − c2)θ + const. +
Rθ

m
=
R

m
· θ

2

p1
· dp1
dθ

.

If we multiply both sides by
dθ

θ2
, this equation may be integrated,

term by term, and we finally obtain with the help of (33)

p1 = ae−
b
θ · θ

m
R

(cp−c2)

where a and b are positive constants; cp and c2 the specific heats
of the vapour and the liquid, at constant pressure. This relation
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between the pressure of the saturated vapour and the temperat-
ure is the more approximately true, the further the temperature
lies below the critical temperature of the vapour.

For mercury vapour, for example, according to a calculation
by H. Hertz, if p1 be given in mm. of mercury,

a = 3.915× 1010; b = 7695;
m

R
(cp − c2) = −0.847.

§ 179. Equation (111) is applicable to the processes of fusion
and sublimation in the same manner as to that of evaporation.
In the first case L denotes the latent heat of fusion of the sub-
stance, if the subscript 1 correspond to the liquid state and 2 to
the solid state, and p1 the melting pressure, i.e. the pressure un-
der which the solid and the liquid substance may be in contact
and in equilibrium. The melting pressure, therefore, just as the
pressure of evaporation, depends on the temperature only. Con-
versely, a change of pressure produces a change in the melting
point:

dθ

dp1
=
θ(v1 − v2)

L
. (113)

For ice at 0◦ C. and under atmospheric pressure, we have

L = 80× 419× 105 (heat of fusion of 1 gr.
of ice in C.G.S. units);

θ = 273;

v1 = 1.0 (vol. of 1 gr. of water at 0◦ C. in cm.3);

v2 = 1.09 (vol. of 1 gr. of ice at 0◦ C. in cm.3).
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To obtain
dθ

dp1
in atmospheres we must multiply by 1, 013, 650:

dθ

dp1
= −273× 0.09× 1013650

80× 419× 105
= −0.0074. (114)

On increasing the external pressure by 1 atmosphere, the melt-
ing point of ice will, therefore, be lowered by 0.0074◦ C.; or, to
lower the melting point of ice by 1◦ C., the pressure must be in-
creased by about 130 atmospheres. This was first verified by the
measurements of W. Thomson (Lord Kelvin). Equation (113)
shows that, conversely, the melting point of substances, which
expand on melting, is raised by an increase of pressure. This has
been qualitatively and quantitatively verified by experiment.

§ 180. By means of the equations (101) still further import-
ant properties of substances in different states may be shown to
depend on one another. From these, along with (110), we obtain

L

θ
= φ1 − φ2.

Differentiating this with respect to θ, we have

1

θ
· dL
dθ
− L

θ4
=

(
∂φ1

∂θ

)

v

+

(
∂φ1

∂v

)

θ

· dv1
dθ

−
(
∂φ2

∂θ

)

v

−
(
∂φ2

∂v

)

θ

· dv2
dθ

,

or, by (81),

=
(cv)1
θ

+

(
∂p1
∂θ

)

v

· dv1
dθ
− (cv)2

θ
−
(
∂p2
∂θ

)

v

· dv2
dθ

.
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We now introduce cp, the specific heat at constant pressure,
for cv, that at constant volume, and obtain by (82), on mul-
tiplying by θ,

dL

dθ
− L

θ
= (cp)1 − θ

(
∂p1
∂θ

)

v

·
(
∂v1
∂θ

)

p

+ θ

(
∂p1
∂θ

)

v

· dv1
dθ

− (cp)2 + θ

(
∂p2
∂θ

)

v

·
(
∂v2
∂θ

)

p

− θ
(
∂p2
∂θ

)

v

· dv2
dθ

,

or, since for both states, according to (6),

(
∂p

∂θ

)

v

= −
(
∂v

∂θ

)

p

·
(
∂p

∂v

)

θ

,

dL

dθ
− L

θ
= (cp)1 − θ

(
∂v1
∂θ

)

p

·
[(

∂p1
∂θ

)

v

+

(
∂p1
∂v

)

θ

· dv1
dθ

]

− (cp)2 + θ

(
∂v2
∂θ

)

p

·
[(

∂p2
∂θ

)

v

+

(
∂p2
∂v

)

θ

· dv2
dθ

]
.

Now, the expressions within the brackets are identical with

dp1
dθ

=
dp2
dθ

=
L

θ(v1 − v2)
.

This gives, finally,

(cp)1−(cp)2 =
dL

dθ
−L
θ

+
L

v1 − v2
·

[(
∂v1
∂θ

)

p

−
(
∂v2
∂θ

)

p

]
. (115)



system in different states of aggregation. 180

This equation, which is rigorously true, again leads to a test of
the second law, since all the quantities in it may be observed
independently of one another.

§ 181. We shall again take as example saturated water va-
pour at 100◦ C. (atmospheric pressure), and calculate its specific
heat at constant pressure. We have the following data:

(cp)2 = 1.03 (= spec. heat of liquid water at 100◦ C.);

L = 536;

θ = 373;

dL

dθ
= −0.708 (decrease of the heat of vaporization with

increase of temperature, according to
Regnault’s observations).

We determine v, and

(
∂v1
∂θ

)

p

from the observations of Hirn, who

found the volume of 1 gr. of steam, at 100◦ under atmospheric
pressure, to be 1650.4 cm.3; and at 118.5◦, 1740 cm.3, whence

v1 = 1650.4;

(
∂v1
∂θ

)

p

=
1740− 1650.4

18.5
= 4.843.

Also

v2 = 1.0;

(
∂v2
∂θ

)

p

= 0.001.

These values, substituted in (115), give

(cp)1 − (cp)2 = −0.56,
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or,
(cp)1 = (cp)2 − 0.56 = 1.03− 0.56 = 0.47.

By direct measurement, Regnault found the mean specific heat
of steam under atmospheric pressure for temperatures somewhat
higher than 100◦ C. to be 0.48.

§ 182. The relation (115) may be simplified, but is inac-
curate, if we neglect the volume v2 of the liquid in comparison
with v1, that of the vapour, and apply to the vapour the char-
acteristic equation of a perfect gas.

Then

v1 =
Rθ

mp1
,

(
∂v1
∂θ

)

p

=
R

mp1
,

and equation (115) becomes, simply,

(cp)1 − (cp)2 =
dL

dθ
.

In our example,

(cp)1 − (cp)2 = −0.71

(cp)1 = 1.03− 0.71 = 0.32,

a value considerably too small.

§ 183. We shall now apply the relation (115) to the melting
of ice at 0◦ C. and under atmospheric pressure. The subscript 1
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now refers to the liquid state, and 2 to the solid state. The
relation between the latent heat of fusion of ice and the temper-
ature has probably never been measured. It may, however, be
calculated from (115), which gives

dL

dθ
= (cp)1 − (cp)2 +

L

θ
− L

v1 − v2

[(
∂v1
∂θ

)

p

−
(
∂v2
∂θ

)

p

]

in which

(cp)1 = 1 (spec. heat of water at 0◦ C.);

(cp)2 = 0.505 (spec. heat of ice at 0◦ C.);

L = 80; θ = 273; v1 = 1; v2 = 1.09;(
∂v1
∂θ

)

p

= −0.00006 (therm. coeff. of expansion
of water at 0◦ C.);(

∂v1
∂θ

)

p

= 0.00011 (thermal coeff. of expansion
of ice at 0◦ C.).

Hence, by the above equation,

dL

dθ
= 0.64,

i.e., if the melting point of ice be lowered 1◦ C. by an appropriate
increase of the external pressure, its heat of fusion decreases by
0.64 cal.

§ 184. It has been repeatedly mentioned in the early
chapters, that, besides the specific heat at constant pressure, or
constant volume, any number of specific heats may be defined
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according to the conditions under which the heating takes place.
Equation (23) of the first law holds in each case:

c =
du

dθ
+ p

dv

dθ
.

In the case of saturated vapours special interest attaches to the
process of heating, which keeps them permanently in a state
of saturation. Denoting by h1 the specific heat of the vapour
corresponding to this process (Clausius called it the specific heat
of “the saturated vapour”), we have

h1 =
du1
dθ

+ p1
dv1
dθ

. (116)

No off-hand statement can be made with regard to the value
of h1; even its sign must in the mean time remain uncertain. For,
if during a rise of temperature of 1◦ the vapour is to remain just
saturated, it must evidently be compressed while being heated,
since the specific volume of the saturated vapour decreases as the
temperature rises. This compression, however, generates heat,
and the question is, whether the latter is so considerable that it
must be in part withdrawn by conduction, so as not to superheat
the vapour. Two cases may, therefore, arise: (1) The heat of
compression may be considerable, and the withdrawal of heat is
necessary to maintain saturation at the higher temperature, i.e.
h1 is negative. (2) The heat of compression may be too slight
to prevent the compressed vapour, without the addition of heat,
from becoming supersaturated. Then, h1 has a positive value.
Between the two there is a limiting case (h1 = 0), where the heat
of compression is exactly sufficient to maintain saturation. In
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this case the curve of the saturated vapour coincides with that
of adiabatic compression. Watt assumed this to be the case for
steam.

It is now easy to calculate h1 from the above formulæ. Call-
ing h2 the corresponding specific heat of the liquid, we have

h2 =
du2
dθ

+ p2
dv2
dθ

. (117)

During heating, the liquid is kept constantly under the pressure
of its saturated vapour. Since the external pressure, unless it
amount to many atmospheres, has no appreciable influence on
the state of a liquid, the value of h2 practically coincides with
that of the specific heat at constant pressure,

h2 = (cp)2. (118)

Subtracting (117) from (116), we get

h1 − h2 =
d(u1 − u2)

dθ
+ p1

d(v1 − v2)
dθ

.

But (110), differentiated with respect to θ, gives

dL

dθ
=
d(u1 − u2)

dθ
+ p1

d(v1 − v2)
dθ

+ (v1 − v2)
dp1
dθ

,

∴ h1 − h2 =
dL

dθ
− (v1 − v2)

dp1
dθ

,

or, by (118) and (111),

h1 = (cp)2 +
dL

dθ
− L

θ
.
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For saturated water vapour at 100◦, we have, as above,

(cp)2 = 1.03;
dL

dθ
= −0.71; L = 536; θ = 373;

whence
h1 = 1.03− 0.71− 536

373
= −1.12.

Water vapour at 100◦ C. represents the first of the cases de-
scribed above, i.e. saturated water vapour at 100◦ is superheated
by adiabatic compression. Conversely, saturated water vapour
at 100◦ becomes supersaturated by adiabatic expansion. The
influence of the heat of compression (or expansion) is greater
than the influence of the increase (or decrease) of the density.
Some other vapours behave in the opposite way.

§ 185. It may happen that, for a given value of θ, the values
of v1 and v2, which are fully determined by the equation (101),
become equal. Then the two states which are in contact with
one another are identical. Such a value of θ is called a crit-
ical temperature of the substance. From a purely mathematical
point of view, every substance must be supposed to have a crit-
ical temperature for each of the three combinations, solid-liquid,
liquid-gas, gas-solid. This critical temperature, however, will
not always be real. The critical temperature θ and the critical
volume v1 = v2, fully determine the critical state. We may cal-
culate it from the equations (101) by finding the condition that
v1−v2 should vanish. If we first assume v1−v2 to be very small,
Taylor’s theorem then gives for any volume v, lying between v1
and v2,

p = p2 +

(
∂p

∂v

)

2

(v − v2) + 1
2

(
∂2p

∂v2

)

2

(v − v2)2, (119)
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and therefore the first equation (101) becomes

p2 +

(
∂p

∂v

)

2

(v1 − v2) + 1
2

(
∂2p

∂v2

)

2

(v1 − v2)2 = p2,

and equation (102), by the integration of (119) with respect to v,
gives

p2(v1−v2)+ 1
2

(
∂p

∂v

)

2

(v1−v2)2+ 1
2·3

(
∂2p

∂v2

)

2

(v1−v2)3 = p2(v1−v2).

The last two equations give, as the conditions of the critical
state, (

∂p

∂v

)

2

= 0, and

(
∂2p

∂v2

)

2

= 0.

These conditions agree with those found in § 30. They are there
geometrically illustrated by the curve of the critical isotherm. In
the critical state the compressibility is infinite; so are also the
thermal coefficient of expansion and the specific heat at constant
pressure; the heat of vaporization is zero.

For all temperatures other than the critical one, the values
of v1 and v2 are different. On one side of the critical isotherm
they have real, on the other imaginary values. In this latter
case our solution of the problem of equilibrium no longer admits
of a physical interpretation. Several reasons may be given for
assuming that not only for evaporation but also for fusion in the
case of many substances there exists a real critical temperature
at which the solid and liquid states are identical (§ 31 and § 191).

§ 186. Third Solution.—In the third place, we shall as-
sume that in the conditions of equilibrium (98)

v1 ≷ v2 ≷ v3.
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We have then, without further simplification,

p1 = p2 = p3,

φ1 − φ2 =
u1 − u2 + p1(v1 − v2)

θ
,

φ2 − φ3 =
u2 − u3 + p1(v2 − v3)

θ
.





(120)

These refer to a state in which the three states of aggregation
are simultaneously present. There are four equations, and these
assign definite values to the four unknowns θ, v1, v2, v3. The
coexistence of the three states of aggregation in equilibrium is,
therefore, possible only at a definite temperature, and with def-
inite densities; therefore, also, at a definite pressure. We shall
call this temperature the fundamental temperature, and the cor-
responding pressure the fundamental pressure of the substance.
According to equations (120), the fundamental temperature is
characterized by the condition that at it the pressure of the sat-
urated vapour is equal to the pressure of fusion. It necessarily
follows, by addition of the last two equations, that this pressure
is also equal to the pressure of sublimation.

After the fundamental temperature and pressure have been
found, the external conditions of § 166—

M1 + (M2 +M3) = M,

M1v1 +M2v2 +M3v3 = V,

M1u1 +M2u2 +M3u3 = U,





(121)

uniquely determine the masses of the three portions of the sub-
stance. The solution, however, can be interpreted physically
only if M1, M2, and M3 are positive.
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§ 187. Let us determine, e.g., the fundamental state of wa-
ter. 0◦ C. is not its fundamental temperature, for at 0◦ C. the
maximum vapour pressure of water is 4.62 mm., but the melt-
ing pressure of ice is 760 mm. Now, the latter decreases with
rise of temperature, while the maximum vapour pressure in-
creases. A coincidence of the two is, therefore, to be expected at
a temperature somewhat higher than 0◦ C. According to equa-
tion (114), the melting point of ice rises by 0.0074◦ C. approx-
imately, when the pressure is lowered from 760 mm. to 4.62 mm.
The fundamental temperature of water is, then, approximately,
0.0074◦ C. At this temperature the maximum vapour pressure
of water nearly coincides with the melting pressure of ice, and,
therefore, also with the maximum vapour pressure of ice. The
specific volumes of water in the three states are, therefore,

v1 = 205, 000; v2 = 1; v3 = 1.09.

For all temperatures other than the fundamental temperature,
the pressure of vaporization, of fusion, and of sublimation differ
from one another.

§ 188. We return once more to the intrinsic conditions of
equilibrium (101) which hold for each of the three combinations
of two states of aggregation. The pressure p1, and the specific
volumes of the two portions of the substance, in each case de-
pend only on the temperature, and are determined by (101).
It is necessary, however, to distinguish whether the saturated
vapour is in contact with the liquid or the solid, since in these
two cases the functions which express the pressure and specific
volume in terms of the temperature are quite different. The state
of the saturated vapour is determined only when there is given,
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besides the temperature, the state of aggregation with which it
is in contact, whether it is in contact with the liquid or solid.
The same applies to the other two states of aggregation. If we
henceforth use the suffixes 1, 2, 3, in this order, to refer to the
gaseous, liquid, and solid states, we shall be obliged to use two
of them when we refer to a portion of the substance in a state of
saturation. The first of these will refer to the state of the portion
considered, the second to that of the portion with which it is in
contact. Both the symbols v12 and v13 thus denote the specific
volume of the saturated vapour, v12, in contact with the liquid,
and v13 in contact with the solid. Similarly v23 and v21, v31,
and v32 represent the specific volumes of the liquid, and of the
solid in a state of saturation. Each of these six quantities is a
definite function of the temperature alone. The corresponding
pressures are

Of vaporization. Of fusion. Of sublimation.
p12 = p21 p23 = p32 p31 = p13

These are also functions of the temperature alone. Only at
the fundamental temperature do two of these pressures become
equal, and therefore equal to the third. If we represent the rela-
tion between these three pressures and the temperature by three
curves, the temperatures as abscissæ and the pressures as ordin-
ates, these curves will meet in one point, the fundamental point,
also called the triple point. The inclination of the curves to the
abscissa is given by the differential coefficients

dp12
dθ

;
dp23
dθ

;
dp31
dθ

.



system in different states of aggregation. 190

We have, therefore, according to equations (111),

dp12
dθ

=
L12

θ(v1 − v2)
,

dp23
dθ

=
L23

θ(v2 − v3)
,

dp31
dθ

=
L31

θ(v3 − v1)
,

where v refers to the fundamental state, and, therefore, requires
only one suffix. We can thus find the direction of each curve at
the fundamental point if we know the heat of vaporization, of
fusion, and of sublimation.

Let us compare, for example, the curve of vaporization, p12,
of water, with its curve of sublimation, p13, near the fundamental
point, 0.0074◦ C. We have, in absolute units,

L12 = 604× 419× 105 (heat of vaporization of
water at 0.0074◦ C.);

L13 = −L31 = (80 + 604)× 419× 105 (heat of sublimation
of ice at 0.0074◦ C.);

v1 = 205000; v2 = 1; v3 = 1.09 (§ 187); θ = 273.

Hence

dp12
dθ

=
604× 419× 105 × 760

273× 205000× 1013650
= 0.339,

dp31
dθ

=
684× 419× 105 × 760

273× 205000× 1013650
= 0.384,
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in millimeters of mercury. The curve of the sublimation pres-
sure p13, is steeper at the fundamental point than the curve of
the vaporization pressure p12. For temperatures above the fun-
damental one, therefore, p13 > p12; for those below it, p12 > p13.
Their difference is

dp13
dθ
− dp12

dθ
=
d(p13 − p12)

dθ
= 0.045.

If, therefore, the maximum vapour pressure of water be meas-
ured above the fundamental point, and of ice below it, the curve
of pressure will show an abrupt bend at the fundamental point.
This change of direction is measured by the discontinuity of the
differential coefficient. At −1◦ C., (dθ = −1), we have, approx-
imately,

p13 − p12 = −0.045;

i.e. at 1◦ C. the maximum vapour pressure of ice is 0.045 mm.
less than that of water. This has been verified by experiment.
The existence of a sharp bend in the curve, however, can only
be inferred from theory.

§ 189. We have hitherto extended our investigation only to
the different admissible solutions of the equations which express
the intrinsic conditions of equilibrium, and have deduced from
them the properties of the states of equilibrium to which they
lead. We shall now consider the relative merit of these solutions,
i.e. which of them represents the state of greatest stability. For
this purpose we resume our original statement of the problem
(§ 165), which is briefly as follows:

Given the total mass M , the total volume V , and the total
energy U , it is required to find the state of most stable equi-
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librium, i.e. the state in which the total entropy of the system
is an absolute maximum. Instead of V and U , however, it is

often more convenient to introduce v =
V

M
, the mean specific

volume of the system, and u =
U

M
, the mean specific energy of

the system.
We have found that the conditions of equilibrium admit, in

general, of three kinds of solution, according as the system is
split into 1, 2, or 3 states of aggregation. When we come to
consider which of these three solutions deserves the preference
in a given case, we must remember that the second and third
can be interpreted physically only if the values of the masses,
as given by the equations (103) and (121), are positive. This
restricts the region of validity of these two solutions. We shall
first establish this region of validity, and then prove that within
its region the third solution is always preferable to the other
two, and, similarly, the second is preferable to the first.

A geometrical representation may facilitate a general survey

of the problem. We shall take the mean specific volume, v =
V

M
,

and the mean specific energy, u =
U

M
, of the system as the

rectangular co-ordinate axes. The value of M is here immaterial.
Each point of this plane will, then, represent definite values of
u and v. Our problem is, therefore, to find the kind of stable
equilibrium which will correspond to any given point in this
plane.

§ 190. Let us consider the region of validity of the third
solution. The values of the masses given by the equations (121)
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where v1, v2, v3, u1, u2, u3, refer, as hereafter, to the special
values which these quantities assume in the fundamental state.

It is obvious from this that the values of M1, M2, M3 can
be simultaneously positive only when the point (v, u) lies within
the triangle formed by the points (v1, u1), (v2, u2), and (v3, u3).
The area of this triangle then represents the region of validity of
the third solution, and may be called the fundamental triangle
of the substance. In Fig. 4 this triangle is represented by (123).
The diagram is based on a substance for which, as for water,

v1 > v3 > v2 and u1 > u2 > u3.

§ 191. We shall now consider the region of validity of the
second solution contained in equations (101) and (103). These
equations furnish three sets of values for the three possible com-
binations, and no preference can be given to any one of these.
If we consider first the combination of liquid and vapour, the
equations referred to become, under our present notation,

θ12 = θ21,

p12 = p21,

φ12 − φ21 =
u12 − u21 + p12(v12 − v21)

θ12
;





(122)

M12 +M21 = M,

M12v12 +M21v21 = V = Mv,

M12u12 +M21u21 = U = Mu.





(123)

In order to determine the area within which the point (v, u) must
lie so that M12 and M21 may both be positive, we shall find the
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limits of that area, i.e. the curves represented by the conditions
M12 = 0, and M21 = 0. The introduction of the latter (no liquid
mass) gives M12 = M and

v = v12, u = u12. (124)

Since v12 and u12 are functions of a single variable, the condi-
tions (124) restrict the point (v, u) to a curve, one of the limits
of the region of validity. The curve passes through the vertex 1
of the fundamental triangle, because, at the fundamental tem-
perature, v12 = v1, and u12 = u1. To follow the path of the curve

it is necessary to find the differential coefficient
du12
dv12

. We, have

du12
dv12

=

(
∂u

∂v

)

12

+

(
∂u

∂θ

)

12

dθ12
dv12

.

The partial differential coefficients here refer to the independent
variables θ and v. It follows from (80) and (24) that

du12
dv12

= θ12

(
∂p

∂θ

)

12

− p12 + (cv)12
dθ12
dv12

.

By means of this equation the path of the curve (124) may be
experimentally plotted by taking θ12, or v12, or some other ap-
propriate quantity as independent parameter.

Similarly, the condition M12 = 0 (no vapour) gives another
boundary of the region of validity, viz. the curve,

v = v21, u = u21,
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which passes through the vertex 2 of the fundamental triangle,
and satisfies the differential equation

du21
dv21

= θ21

(
∂p

∂θ

)

21

− p12 + (cv)21
dθ12
dv21

,

since θ21 = θ12 and p21 = p12.
The two limiting curves, however, are merely branches of

one curve, since they pass into one another at the critical point
(v12 = v21) without forming an angle or cusp at that point, as

a further discussion of the values of
du12
dv12

and
du21
dv21

will show.

We may, therefore, include the two branches under the name
of the vaporization curve. Every point (v12, u12) of one branch
has a corresponding point (v21, u21) on the other, since these
two represent the same temperature θ12 = θ21, and the same
pressure p12 = p21. This co-ordination of points on the two
branches is given by the equations (122), and has been indicated
on our diagram (Fig. 4) by drawing some dotted lines joining
corresponding points. In this sense the vertices 1 and 2 of the
fundamental triangle are corresponding points, and the critical
point is self-corresponding.

This vaporization curve bounds the region of validity of that
part of the second solution which refers to liquid in contact with
its vapour. Equation (123) makes it obvious that the region of
validity lies within the concave side of the curve. The curve has
not been produced beyond the vertices 1 and 2 of the funda-
mental triangle, because we shall see later, that the side 12 of
that triangle bounds the area within which this solution gives
stable equilibrium. There may be found, quite analogous to
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the vaporization curve, also a fusion curve the two branches of
which are represented by

v = v23, u = u23,

and
v = v32, u = u32,

and a sublimation curve represented by

v = v31, u = u31,

and
v = v13, u = u13,

The former passes through the vertices 2 and 3, the latter
through 3 and 1, of the fundamental triangle. The region of
validity of the three parts of the second solution have been
marked (12), (23), and (31), respectively, in Fig. 4. The rela-
tions which have been specially deduced for the area (12) apply
to (23) and (31) as well only with a corresponding interchange
of the suffixes. Some pairs of corresponding points have again
been joined by dotted lines. On the fusion curve a critical
point has been marked, on the assumption that, with falling
temperature, the latent heat of ice decreases by 0.64 calorie per
degree Centigrade (§ 183). If, as a rough approximation, we
assume this same ratio to hold for much lower temperatures,
the latent heat of fusion would be zero at about −120◦ C., and
this would be the critical point of the fusion curve. The pressure
here would be about 17, 000 atmospheres, and water and ice
would become identical. We might imagine this to be the result
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of a considerable increase in the viscosity of water and in the
plasticity of ice, as they both approach this state.

§ 192. Having thus fixed the region of validity for the second
solution, we find that for all points (v, u) outside this region
only the first solution admits of physical interpretation. It fol-
lows that for such points the first solution represents the stable
equilibrium. The areas where such is the case have been marked
(1), (2), and (3) in our figure, to signify the gaseous, liquid, and
solid states respectively.

§ 193. We have now to consider the following question:
Which of the different states of equilibrium, that may corres-
pond to given values M , v, u (or to a given point of the figure),
gives to the system the greatest value of the entropy? Since each
of the three solutions discussed leads to a definite state of the
system, we have for each given system (M, v, u) as many values
of the entropy as there are solutions applying to it. Denoting
these by Φ, Φ′, and Φ′′, we get for the first solution

Φ = Mφ; (125)

for the second

Φ′ = Mφ′ = M12φ12 +M21φ21 (126)

(or a cyclic interchange of the suffixes 1, 2, 3); for the third

Φ′′ = Mφ′′ = M1φ1 +M2φ2 +M3φ3. (127)

All these quantities are fully determined by the given values of
M , v, and u. Now, we can show that for any system (M, v, u)
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we have Φ′′ > Φ′ > Φ, or φ′′ > φ′ > φ, provided all the par-
tial masses are positive. It is more convenient to deal with the
mean specific entropies than with the entropies themselves, be-
cause the former, being functions of v and u alone, are quite
independent of M .

As a geometrical representation, we may imagine, on the
plane of our figure (Fig. 4), perpendiculars erected at each point
(v, u), proportional in length to the values of φ, φ′, and φ′′ re-
spectively, at that point. The upper ends of these perpendiculars
will generate the three surfaces of entropy, φ, φ′, and φ′′.

§ 194. We shall show that φ′−φ is always positive, i.e. that
the surface of entropy, φ′, lies everywhere above the surface φ.

While the value of φ may be taken directly from (61), which
contains the definition of the entropy for homogeneous sub-
stances, φ′ may be found from (126), (122), and (123), in terms
of v and u. The surface φ′ forms three sheets corresponding to
the three combinations of two states of aggregation. We shall in
the following refer to the combination of vapour and liquid.

With regard to the relative position of the surfaces φ and φ′,
it is obvious that they have one curve in common, the projection
of which is the vaporization curve. At any point on the vapor-
ization curve we have v = v12, u = u12, and for the first entropy
surface, φ = φ12; for the second we have, from (123),

M21 = 0, M12 = M (128)

and, from (126),
φ′ = φ12.

In fact, for all points of the vaporization curve, both solutions
coincide. The curve of intersection of the surfaces φ and φ′ is
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represented by

v = v12, u = u12, φ = φ12,

where v, u, and φ are the three rectangular co-ordinates of a
point in space. v12, u12, φ12 depend on a single variable para-
meter, for example, the temperature, θ12 = θ21. This curve
passes through the point (v1, u1, φ1), which has the vertex 1 for
its projection. A second branch of the same curve is given by
the equations

v = v21, u = u21, φ = φ21,

and these branches meet in a point whose projection is the crit-
ical point. Each point of one branch has a corresponding point
on the other, since both correspond to the same temperature,
θ12 = θ21, and the same pressure, p12 = p21. Thus, (v1, u1, φ1)
and (v2, u2, φ2) are corresponding points.

It is further obvious that the surface φ′ is a ruled surface and
is developable. The first may be shown by considering any point
with the co-ordinates

v =
λv12 + µv21
λ+ µ

; u =
λu12 + µu21

λ+ µ
; φ =

λφ12 + µφ21

λ+ µ
;

where λ and µ are arbitrary positive quantities. By giving λ and
µ all positive values, we obtain all points of the straight line join-
ing the corresponding points (v12, u12, φ12) and (v21, u21, φ21).
But this line lies on the surface φ′, since all the above val-
ues of (v, u, φ) satisfy the equations (123) and (126) if we put
M12 = λ and M21 = µ. The surface φ′, then, is formed of the
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lines joining the corresponding points on the curve in which the
surfaces φ′ and φ meet. One of these is the line joining the
points (v1, u1, φ1) and (v2, u2, φ2), the projection of which is the
side 12 of the fundamental triangle. At the critical point, the
line shrinks to a point, and here the surface φ ends. The other
two sheets of the surface are quite similar. One begins at the line
joining (v2, u2, φ2) and (v3, u3, φ3), the other at the line joining
(v3, u3, φ3) and (v1, u1, φ1).

The developability of the surface φ′ may best be inferred
from the following equation of a plane:—

p12(v − v12) + (u− u12)− θ12(φ− φ12) = 0,

where v, u, φ are variable co-ordinates, while p12, v12, u12,
θ12, φ12, depend, by (122), on one parameter, e.g. θ12. This plane
contains the point (v12, u12, φ12), and by the equations (122) the
point (v21, u21, φ21), which are corresponding points, and hence
also the line joining them. But it also, by (61), contains the
neighbouring corresponding points

(v12 + dv12, u12 + du12, φ12 + dφ12)

and
(v21 + dv21, u21 + du21, φ21 + dφ21),

hence also the line joining them. Therefore, two consecutive
generating lines are coplanar, which is the condition of develop-
ability of a surface.

In order to determine the value of φ′ − φ, we shall find the
change which this difference undergoes on passing from a point
(v, u) to a neighbouring one (v+δv, u+δu). During this passage
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we shall keep M = M12 +M21 constant. This does not affect the
generality of the result, since φ and φ′ are functions of v and u
only. From (126) we have

M δφ′ = M12 δφ12 +M21 δφ21 + φ12 δM12 + φ21 δM21,

and, by (61),

δφ =
δu+ p δv

θ
.

But, by (123),

δM12 + δM21 = 0,

M12 δv12 +M21 δv21 + v12 δM12 + v21 δM21 = M δv,

M12 δu12 +M21 δu21 + u12 δM12 + u21 δM21 = M δu.





(129)

Whence, by (122),

δφ′ =
δu+ p12 δv

θ12
(130)

and

δ(φ′ − φ) =

(
1

θ12
− 1

θ

)
δu+

(
p12
θ12
− p

θ

)
δv. (131)

If we now examine the surfaces φ and φ′ in the neighbourhood
of their curve of contact, it is evident from the last equation that
they touch one another along the whole of this curve. For, at any
point of the vaporization curve, we have v = v12 and u = u12;
therefore also

θ = θ12, and p = p12 (132)



system in different states of aggregation. 203

and hence, for the entire curve, δ(φ′ − φ) = 0.
To find the kind of contact between the two surfaces, we

form δ2(φ′ − φ) from (131), and apply it to the same points of
the curve of contact. In general,

δ2(φ′ − φ) = δu

(
δθ

θ2
− δθ12

θ212

)

+ δv

(
δp12
θ12
− δp

θ
− p12 δθ12

θ212
+
p δθ

θ2

)

+ δ2u

(
1

θ12
− 1

θ

)
+ δ2v

(
p12
θ12
− p

θ

)
.

According to (132) we have, at the points of contact of the sur-
faces,

θ2 δ2(φ′ − φ) = δu (δθ − δθ12) + δv(θ δp12 − θ δp− p δθ12 + p δθ),

or, by (61),

θ δ2(φ′ − φ) = (δθ − δθ12) δφ+ (δp12 − δp) δv. (133)

All these variations may be expressed in terms of δθ and δv, by
putting

δφ =
cv
θ
δθ +

∂p

∂θ
δv by (81),

δp =
∂p

∂θ
δθ +

∂p

∂v
δv,

δp12 =
dp12
dθ12

δθ12.
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We have now to express δθ12 in terms of δθ and δv. Equa-
tions (129), here simplified by (128), give

δu12 − δu
u12 − u21

=
δv12 − δv
v12 − v21

.

In these we put

δu12 =
du12
dθ12

δθ12, δv12 =
dv12
dθ12

δθ12, (134)

δu = cv δθ +
∂u

∂v
δv,

and obtain

δθ12 =

cv δθ +

(
∂u

∂v
− u12 − u21
v12 − v21

)
δv

du12
dθ12

− u12 − u21
v12 − v21

· dv12
dθ12

.

If we consider that, by (109),

u12 − u21
v12 − v21

= θ12
dp12
dθ12

− p12 (135)

= θ
dp12
dθ12

− p,

that, by (80),
∂u

∂v
= θ

dp

dθ
− p

and that

du12
dθ12

=

(
∂u

∂θ

)

12

+

(
∂u

∂v

)

12

· dv12
dθ12

= cv +

(
θ
∂p

∂θ
− p
)
dv12
dθ12

; (136)
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also that
dp12
dθ12

=
∂p

∂θ
+
∂p

∂v
· dv12
dθ12

,

we obtain

δθ12 =
cv δθ − θ

∂p

∂v
· dv12
dθ12

δv

cv − θ
∂p

∂v

(
dv12
dθ12

)2 .

Equation (133), with all variations expressed in terms of δθ
and δv, finally becomes

δ2(φ′ − φ) = −∂p
∂v
· cv
θ
·

(
dv12
dθ12

δθ − δv
)2

cv − θ
∂p

∂v

(
dv12
dθ12

)2 .

This expression is essentially positive, since cv is positive on

account of its physical meaning, and
∂p

∂v
is negative for any state

of equilibrium (§ 169). There is a limiting case, when

dv12
dθ12

δθ − δv = 0,

for, then,
δ2(φ′ − φ) = 0.

In this case the variation (δθ, δv) obviously takes place along
the curve of contact (θ12, v12) of the surfaces. Here we know
that φ′ = φ.
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It follows that the surface φ′, in the vicinity of all points
of contact with φ, rises above the latter throughout, or that
φ′ − φ is everywhere > 0. This proves that the second solution
of the conditions of equilibrium, within its region of validity, i.e.
in the areas (12), (23), and (31), always represents the stable
equilibrium.

§ 195. Similarly, it may be shown that the third solution,
within its region of validity, is preferable to the second one. The
quantities v and u being given, the value of the mean specific
entropy, φ′′, corresponding to this solution is uniquely determ-
ined by the equations (127) and (121). The quantities v1, v2, v3,
u1, u2, u3, and therefore also φ1, φ2, φ3, have definite numerical
values, given by equations (120).

In the first place, it is obvious that the surface φ′′ is the
plane triangle formed by the points (v1, u1, φ1), (v2, u2, φ2), and
(v3, u3, φ3), the projection of which on the plane of the figure is
the fundamental triangle, since any point with the co-ordinates

v =
λv1 + µv2 + νv3

λ+ µ+ ν
,

u =
λu1 + µu2 + νu3

λ+ µ+ ν
,

φ =
λφ1 + µφ2 + νφ3

λ+ µ+ ν
,

(λ, µ, ν may have any positive values) satisfies the equations
(121) and (127). To show this, we need only put M1 = λ, M2 =
µ, M3 = ν. This plane meets the three sheets of the develop-
able surface φ′ in the three lines joining the points (v1, u1, φ1),
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(v2, u2, φ2), (v3, u3, φ3). In fact, by making ν = 0, i.e., by (121),
M3 = 0, the third solution coincides with the second; for, then,

M1 = M12; M2 = M21; v1 = v12; u1 = u12;

v2 = v2l; θ1 = θ12; etc.

}
(137)

If we also put µ = 0, then we have M2 = 0, v1 = v, u1 = u,
which means the coincidence of all three surfaces, φ′′, φ′, and φ.

In order to find the sign of φ′′ − φ′, we again find δ(φ′′ − φ′)
in terms of δu and δv. Equation (127) gives

M δφ′′ = φ1 δM1 + φ2 δM2 + φ3 δM3 (138)

where, by (121),

δM1 + δM2 + δM3 = 0,

v1 δM1 + v2 δM2 + v3 δM3 = M δv,

u1 δM1 + u2 δM2 + u3 δM3 = M δu.

Multiplying the last of these by
1

θ1
, the second by

p1
θ1

, and adding

to (138), we obtain, with the help of (120),

δφ′′ =
δu+ p1 δv

θ1
.

This, in combination with (130), gives

δ(φ′′ − φ′) =

(
1

θ1
− 1

θ12

)
δu+

(
p1
θ1
− p12
θ12

)
δv, (139)
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if the surface φ′ is represented by the sheet (12). This equation
shows that the surface φ′′ is a tangent to the sheet (12) along
the line joining (v1, u1, φ1) and (v2, u2, φ2), for all points of this
line have θ1 = θ12, p1 = p12, so that δ(φ′′ − φ′) vanishes. Thus,
we find that the plane φ′′ is a tangent plane to the three sheets
of the surface φ′. The curves of contact are the three straight
lines which form the sides of the plane triangle φ′′. We have,
from (139), for any point of contact

δ2(φ′′ − φ′) =
δθ12
θ21

δu+

(
p1 δθ12
θ21

− δp12
θ1

)
δv,

since θ1 and p1 are absolute constants; or

θ21 δ
2(φ′′ − φ′) =

[
δu−

(
θ1
dp12
dθ12

− p1
)
δv

]
δθ12. (140)

Now, by the elimination of δM12 and δM21, it follows, from (129),
that

M12 δv12 +M21 δv21 −M δv

v12 − v21
=
M12 δu12 +M21 δu21 −M δu

u12 − u21

or, by (135) and (134),

M

[
δu−

(
θ1
dp12
dθ12

− p1
)
δv

]

= δθ12

[
M12

du12
dθ12

+M21
du21
dθ12

−
(
θ1
dp12
dθ12

− p1
)
·
(
M12

dv12
dθ12

+M21
dv21
dθ12

)]
.
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Substituting this expression in (140), and replacing
du12
dθ12

and

du21
dθ21

by their values (136), we obtain

δ2(φ′′ − φ′) =
δθ212
Mθ21

[
M12

(
(cv)12 − θ1

(
∂p

∂v

)

12

·
(
dv12
dθ12

)2
)

+ M21

(
(cv)21 − θ1

(
∂p

∂v

)

21

·
(
dv21
dθ12

)2
)]

.

This quantity is essentially positive, sinceM12,M21, as well as cv,

are always positive, and
∂p

∂v
always negative for states of equilib-

rium. There is a limiting case, when δθ12 = 0, i.e. for a variation
along the line of contact of the surfaces φ′′ and φ′, as is obvi-
ous. It follows that the plane area φ′′ rises everywhere above the
surface φ′, and that φ′′ − φ′ is never negative. This proves that
the third solution within its region of validity (the fundamental
triangle of the substance) represents stable equilibrium.

§ 196. We are now in a position to answer generally the
question proposed in § 165 regarding the stability of the equi-
librium.

The total mass M , the volume V , and the energy U of a
system being given, its corresponding state of stable equilibrium

is determined by the position of the point v =
V

M
, u =

U

M
, in

the plane of Fig. 4.
If this point lie within one of the regions (1), (2), or (3),

the system behaves as a homogeneous gas, liquid, or solid. If it
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lie within (12), (23), or (31), the system splits into two different
states of aggregation, indicated by the numbers used in the nota-
tion of the region. In this case, the common temperature and
the ratio of the two heterogeneous portions are completely de-
termined. According to the equation (123), the point (v, u) lies
on the straight line joining two corresponding points of the lim-
iting curve. If a straight line be drawn through the given point
(v, u), cutting the two branches of that curve in corresponding
points, these points give the properties of the two states of ag-
gregation into which the system splits. They have, of course,
the same temperature and pressure. The proportion of the two
masses, according to the equation (123), is given by the ratio in
which the point (v, u) divides the line joining the corresponding
points.

If, finally, the point (v, u) lie within the region of the funda-
mental triangle (123), stable equilibrium is characterized by a
division of the system into a solid, a liquid, and a gaseous por-
tion at the fundamental temperature and pressure. The masses
of these three portions may then be determined by the equa-
tions (121a). It will be seen that their ratio is that of the three
triangles, which the point (v, u) makes with the three sides of
the fundamental triangle.

The conditions of stable equilibrium of any substance can
thus be found, provided its fundamental triangle, its vaporiza-
tion, fusion, and sublimation curves have been drawn once for
all. To obtain a better view of the different relations, isothermal
and isopiestic curves may be added to the figure. These curves
coincide in the regions (12), (23), (31), and form the straight
lines joining corresponding points on the limiting curves. On
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the other hand, the area (123) represents one singular isothermal
and isopiestic (the triple point). In this way we may find that
ice cannot exist in stable equilibrium at a higher temperature
than the fundamental temperature (0.0074◦ C.), no matter how
the pressure may be reduced. Liquid water, on the other hand,
may, under suitable pressure, be brought to any temperature
without freezing or evaporating.

A question which may also be answered directly is the fol-
lowing. Through what stages will a body pass if subjected to
a series of definite external changes? For instance, the beha-
viour of a body of mass M , when cooled or heated at constant

volume V , may be known by observing the line v =
V

M
parallel

to the axis of ordinates. The regions which this line traverses
show the states through which the body passes, e.g. whether the
substance melts during the process, or whether it sublimes, etc.



CHAPTER III.

SYSTEM OF ANY NUMBER OF INDEPENDENT
CONSTITUENTS.

§ 197. We proceed to investigate quite generally the equilib-
rium of a system made up of distinct portions in contact with
one another. The system, contrary to that treated of in the
preceding chapter, may consist of any number of independent
constituents. Following Gibbs, we shall call each one of these
portions, inasmuch as it may be considered physically homogen-
eous (§ 67), a phase. Thus, a quantity of water partly gaseous,
partly liquid, and partly solid, forms a system of three phases.
The number of phases as well as the states of aggregation is
quite arbitrary, although we at once recognize the fact that a
system in equilibrium may consist of any number of solid and li-
quid phases, but only one single gaseous phase, for two different
gases in contact are never in equilibrium with one another.

§ 198. A system is characterized by the number of its inde-
pendent constituents,∗ in addition to the number of its phases.
The main properties of the state of equilibrium depend upon
these. We define the number of independent constituents as
follows. First find the number of elements contained in the sys-
tem, and from these discard, as dependent constituents, all those
whose quantity is determined in each phase by the remaining
ones. The number of the remaining elements will be the num-
ber of independent constituents of the system. It is immaterial
which of the constituents we regard as independent and which

∗Frequently termed components.
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as dependent, since we are here concerned with the number, and
not with the kind, of the independent constituents. The question
as to the number of the independent constituents has nothing
at all to do with the chemical constitution of the substances in
the different phases, in particular, with the number of different
kinds of molecules.

Thus, a quantity of water in any number of states forms but
one independent constituent, however many associations and
dissociations of H2O molecules may occur (it may be a mixture
of hydrogen and oxygen or ions), for the mass of the oxygen in
each phase is completely determined by that of the hydrogen,
and vice versâ. Should, however, an excess of oxygen or hydro-
gen be present in the vapour, we have then two independent
constituents.

An aqueous solution of sulphuric acid forms a system of three
chemical elements, S, H, and O, but contains only two independ-
ent constituents, for, in each phase (e.g. liquid, vapour, solid)
the mass of O depends on that of S and H, while the masses
of S and H are not in each phase interdependent. Whether the
molecule H2SO4 dissociates in any way, or whether hydrates are
formed or not, does not change the number of independent con-
stituents of the system.

§ 199. We denote the number of independent constituents
of a system by α. By our definition of this number we see, at
once, that each phase of a given system in equilibrium is de-
termined by the masses of each one of its α constituents, the
temperature θ, and the pressure p. For the sake of uniformity,
we assume that each of the α independent constituents actually
occurs in each phase of the system in a certain quantity, which,
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in special cases, may become infinitely small. The selection of
the temperature and the pressure as independent variables, pro-
duces a change in the form of the equations of the last chapter,
where the temperature and the specific volume were considered
as the independent variables. The substitution of the pressure
for the volume is more convenient here, because the pressure is
the same for all phases in free contact, and it can in most cases
be more readily measured.

§ 200. We shall now consider the thermodynamical equilib-
rium of a system, in which the total masses of the a independent
constituents M1, M2, . . . , Mα are given. Of the different forms
of the condition of equilibrium it is best to use that expressed
by equation (79)

δΨ = 0 (141)

which holds, if θ and p remain constant, for any change com-
patible with the given conditions. The function Ψ is given in
terms of the entropy Φ, the energy U , and the volume V , by the
equation

Ψ = Φ− U + pV

θ
.

§ 201. Now, let β be the number of phases in the system,
then Φ, U , and V , and therefore also Ψ, are sums of β terms,
each of which refers to a single phase, i.e. to a physically homo-
geneous body:

Ψ = Ψ′ + Ψ′′ + · · ·+ Ψβ, (142)

where the different phases are distinguished from one another
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by dashes. For the first phase,

Ψ′ = Φ′ − U ′ + pV ′

θ
. (143)

Φ′, U ′, V ′, and Ψ′ are completely determined by θ, p, and the
masses M1, M2, . . . , Mα of the independent constituents in the
phases. As to how they depend on the masses, all we can at
present say is, that, if all the masses were increased in the same
proportion (say doubled), each of these functions would be in-
creased in the same proportion. Since the nature of the phase
remains unchanged, the entropy, the energy, and the volume
change in the same proportion as the mass; hence, also, the
function Ψ′. In other words, Ψ′ is a homogeneous function of
the masses M ′

1, M
′
2, . . . , M ′

α of the first degree, but not neces-
sarily linear.

To express this analytically, let us increase all the masses in
the same ratio 1 + ε : 1, where ε is very small. All changes are
then small; and for the corresponding change of Ψ′ we obtain

∆Ψ′ =
∂Ψ′

∂M1

∆M ′
1 +

∂Ψ′

∂M2

∆M ′
2 + . . .

=
∂Ψ′

∂M ′
1

εM ′
1 +

∂Ψ′

∂M ′
2

εM ′
2 + . . . .

But, by supposition,
∆Ψ = εΨ′,

and, therefore,

Ψ′ =
∂Ψ′

∂M ′
1

M ′
1 +

∂Ψ′

∂M ′
2

M ′
2 + · · ·+ ∂Ψ′

∂M ′
α

M ′
α. (144)



any number of independent constituents. 216

Various forms may be given to this Eulerian equation by further

differentiation. The differential coefficients
∂Ψ′

∂M ′′
1

,
∂Ψ′

∂M ′′
2

, . . .

evidently depend on the constitution of the phase, and not on
its total mass, since a change of mass changes both numerator
and denominator in the same proportion.

§ 202. By (142), the condition of equilibrium becomes

δΨ′ + δΨ′′ + . . .+ δΨβ = 0, (145)

or, since the temperature and pressure remain constant,

∂Ψ′

∂M ′
1

δM ′
1 +

∂Ψ′

∂M ′
2

δM ′
2 + · · ·+ ∂Ψ′

∂M ′
α

δM ′
α

+
∂Ψ′′

∂M ′′
1

δM ′′
1 +

∂Ψ′′

∂M ′′
2

δM ′′
2 + · · ·+ ∂Ψ′′

∂M ′′
α

δM ′′
α

+ . . .

+
∂Ψβ

∂Mβ
1

δMβ
1 +

∂Ψβ

∂Mβ
2

δMβ
2 + · · ·+ ∂Ψβ

∂Mβ
α

δMβ
α = 0. (146)

If the variation of the masses were quite arbitrary, then the
equation could only be satisfied, if all the coefficients of the
variations were equal to 0. According to § 200, however, the
following conditions exist between them,

M1 = M ′
1 +M ′′

1 + · · ·+Mβ
1 ,

M2 = M ′
2 +M ′′

2 + · · ·+Mβ
2 ,

. . .

Mα = M ′
α +M ′′

α + · · ·+Mβ
α ,





(147)



any number of independent constituents. 217

and, therefore, for any possible change of the system,

0 = δM ′
1 + δM ′′

1 + · · ·+ δMβ
1 ,

0 = δM ′
2 + δM ′′

2 + · · ·+ δMβ
2 ,

. . .

0 = δM ′
α + δM ′′

α + · · ·+ δMβ
α .





(148)

For the expression (146) to vanish, the necessary and sufficient
condition is

∂Ψ′

∂M ′
1

=
∂Ψ′′

∂M ′′
1

= · · · = ∂Ψβ

∂Mβ
1

,

∂Ψ′

∂M ′
2

=
∂Ψ′′

∂M ′′
2

= · · · = ∂Ψβ

∂Mβ
2

,

. . .

∂Ψ′

∂M ′
α

=
∂Ψ′′

∂M ′′
α

= · · · = ∂Ψβ

∂Mβ
α

.





(149)

There are for each independent constituent (β − 1) equations,
which must be satisfied, and therefore for all the α independent
constituents α(β− 1) conditions. Each of these equations refers
to the transition from one phase into another, and asserts that
this particular transition does not take place in nature. This
condition depends, as it must, on the internal constitution of the
phase, and not on its total mass. Since the equations in a single
row with regard to a particular constituent may be arranged
in any order, it follows that, if a phase be in equilibrium as
regards a given constituent with two others, these two other
phases are in equilibrium with one another with regard to that
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constituent (they coexist). This shows that, since any system
in equilibrium can have only one gaseous phase, two coexisting
phases must emit the same vapour. For, since each phase is in
equilibrium with the other, and also with its own vapour with
respect to all constituents, it must also coexist with the vapour
of the second phase. The coexistence of solid and liquid phases
may, therefore, be settled by comparing their vapours.

§ 203. It is now easy to see how the state of equilibrium
of the system is determined, in general, by the given external
conditions (147), and the conditions of equilibrium (149). There
are a of the former and α(β−1) of the latter, a total of αβ equa-
tions. On the other hand, the state of the β phases depends on
(αβ+2) variables, viz. on the αβ masses, M ′

1, . . . , Mβ
α , the tem-

perature θ, and the pressure p. After all conditions have been
satisfied, two variables still remain undetermined. In general,
the temperature and the pressure may be arbitrarily chosen,
but in special cases, as will be shown presently, these are no
longer arbitrary, and in such cases two other variables, as the
total energy and the total volume of the system, are undeter-
mined. By disposing of the values of the arbitrary variables we
completely determine the state of the equilibrium.

§ 204. The αβ + 2 variables, which control the state of
the system, may be separated into those which merely govern
the composition of the phases (internal variables), and those
which determine only the total masses of the phases (external
variables). The number of the former is (α−1)β+2, for in each
of the β phases there are α−1 ratios between its α independent
constituents, to which must be added temperature and pressure.
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The number of the external variables is β, viz. the total masses
of all the phases.

We found that the α(β − 1) equations (149) contain only
internal variables, and, therefore, after these have been satisfied,
there remain

[
(α− 1)β + 2

]
−
[
α(β − 1)

]
= α− β + 2

of the internal variables, undetermined. This number cannot
be negative, for otherwise the number of the internal variables
of the system would not be sufficient for the solution of the
equations (149). It, therefore, follows that

β ≤ α + 2.

The number of the phases, therefore, cannot exceed the number
of the independent constituents by more than two; or, a system
of α independent constituents will contain at most (α+2) phases.
In the limiting case, where β = α+2, the number of the internal
variables are just sufficient to satisfy the internal conditions of
equilibrium (149). Their values in the state of equilibrium are
completely determined quite independently of the given external
conditions. Decreasing the number of phases by one increases
the number of the indeterminate internal variables by one.

This proposition, first propounded by Gibbs and universally
known as the phase rule, has been amply verified, especially by
the experiments of Bakhuis Roozeboom.

§ 205. We shall consider, first, the limiting case:

β = α + 2.
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(Non-variant systems.) Since all the internal variables are com-
pletely determined, they form an (n + 2)-ple point. Change of
the external conditions, as heating, compression, further addi-
tions of the substances, alter the total masses of the phases, but
not their internal nature, including temperature and pressure.
This holds until the mass of some one phase becomes zero, and
therewith completely vanishes from the system.

If α = 1, then β = 3. A single constituent may split into
three phases at most, forming a triple point. An example of
this is a substance existing in the three states of aggregation, all
in contact with one another. For water it was shown in § 187,
that at the triple point the temperature is 0.0074◦ C., and the
pressure 4.62 mm. of mercury. The three phases need not, how-
ever, be different states of aggregation. Sulphur, for instance,
forms several modifications in the solid state. Each modification
constitutes a separate phase, and the proposition holds that two
modifications of a substance can coexist with a third phase of
the same substance, for example, its vapour, only at a definite
temperature and pressure.

A quadruple point is obtained when α = 2. Thus, the two
independent constituents, SO2 (sulphur dioxide) and H2O, form
the four coexisting phases: SO2, 7 H2O (solid), SO2 dissolved
in H2O (liquid), SO2 (liquid), SO2 (gaseous), at a temperature
of 12.1◦ C. and a pressure of 1770 mm. of mercury. The question
as to the formation of hydrates by SO2 in aqueous solution does
not influence the application of the phase rule (see § 198).

Three independent constituents (α = 3) lead to a quintuple
point. Thus Na2SO4, MgSO4, and H2O give the double salt
Na2Mg(SO4)24 H2O (astrakanite), the crystals of the two simple
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salts, aqueous solution, and water vapour, at a temperature of
22◦ C. and a pressure of 19.6 mm. of mercury.

§ 206. We shall now take the case

β = α + 1,

that is, α independent constituents form α+ 1 phases (Univari-
ant systems). The composition of all the phases is then com-
pletely determined by a single variable, e.g. the temperature or
the pressure. This case is generally called perfect heterogeneous
equilibrium.

If α = 1, then β = 2: one independent constituent in two
phases, e.g. a liquid and its vapour. The pressure and the density
of the liquid and the vapour depend on the temperature alone,
as was pointed out in the last chapter. Evaporation involving
chemical decomposition also belongs to this class, since the sys-
tem contains only one independent constituent. The evapora-
tion of solid NH4Cl is a case in point. Unless there be present
an excess of hydrochloric acid or ammonia gas, there will be for
each temperature a quite definite dissociation pressure.

If α = 2, then β = 3, for instance when the solution of a salt
is in contact with its vapour and with the solid salt, or when two
liquids that cannot be mixed in all proportions (ether and water)
are in contact with their common vapour. Vapour pressure,
density and concentration in each phase, are here functions of
the temperature alone.

§ 207. We often take the pressure instead of the temperat-
ure as the variable which controls the phases in perfect hetero-
geneous equilibrium; namely, in systems which do not possess
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a gaseous phase, so-called condensed systems. Upon these the
influence of the pressure is so slight that, under ordinary circum-
stances, it may be considered as given, and equal to that of the
atmosphere. The phase rule, therefore, gives rise to the following
proposition: A condensed system of a independent constituents
forms α+ 1 phases at most, and is then completely determined,
temperature included. The melting point of a substance, and the
point of transition from one allotropic modification to another,
are examples of α = 1, β = 2. The point at which the cryo-
hydrate (ice and solid salt) separates out from the solution of
a salt, and also the point at which two liquid layers in contact
begin to precipitate a solid (e.g. AsBr3, and H2O) are examples
of α = 2, β = 3. We have an example of α = 3, β = 4 when two
salts, capable of forming a double salt, are in contact with the
solid simple salts, and also with the double salt.

§ 208. If
β = α,

then α independent constituents form α phases (Divariant sys-
tems). The internal nature of all the phases depends on two
variables, e.g. on temperature and pressure. Any homogeneous
substance furnishes an example of α = 1. A liquid solution of
a salt in contact with its vapour is an example of α = 2. The
temperature and the pressure determine the concentration in the
vapour as well as in the liquid. The concentration of the liquid
and either the temperature or the pressure are frequently chosen
as the independent variables. In the first case, we say that a
solution of given concentration and given temperature emits a
vapour of definite composition and definite pressure; and in the
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second case, that a solution of given concentration and given
pressure has a definite boiling point, and at this temperature a
vapour of definite composition may be distilled off.

Corresponding regularities hold when the second phase is
solid or liquid, as in the case of two liquids which do not mix
in all proportions. The internal nature of the two phases, in
our example the concentrations in the two layers of the liquids,
depends on two variables—pressure and temperature. If, un-
der special circumstances, the concentrations become equal, a
phenomenon is obtained which is quite analogous to that of the
critical point of a homogeneous substance (critical solution tem-
perature of two liquids).

§ 209. Let us now consider briefly the case

β = α− 1,

where the number of phases is one less than the number of the
independent constituents, and the internal nature of all phases
depends on a third arbitrary variable, besides temperature and
pressure. Thus, α = 3, β = 2 for an aqueous solution of two
isomorphous substances (potassium chlorate and thallium chlor-
ate) in contact with a mixed crystal. The concentration of
the solution under atmospheric pressure and at a given tem-
perature will vary according to the composition of the mixed
crystal. We cannot, therefore, speak of a saturated solution of
the two substances of definite composition. However, should
a second solid phase—for instance, a mixed crystal of different
composition—separate out, the internal nature of the system
will be determined by temperature and pressure alone. The ex-
perimental investigation of the equilibrium of such systems may
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enable us to decide whether a precipitate from a solution of two
salts forms one phase—for example, a mixed crystal of chan-
ging concentration—or whether the two substances are to be
considered as two distinct phases in contact. If, at a given tem-
perature and pressure, the concentration of the liquid in contact
were quite definite, it would represent the former case, and, if
not, the latter.

§ 210. If the expressions for the functions Ψ′, Ψ′′, . . . for
each phase were known, the equations (149) would give every
detail regarding the state of the equilibrium. This, however, is
by no means the case, for, regarding the relations between these
functions and the masses of the constituents in the individual
phases, all we can, in general, assert is that they are homogen-
eous functions of the first degree (§ 201). We can, however, tell
how they depend upon temperature and pressure, since their dif-
ferential coefficients with respect to θ and p can be given. This
point leads to far-reaching conclusions concerning the variation
of the equilibrium with temperature and pressure.

Since, for the first phase, according to (143),

Ψ′ = Φ′ − U ′ + pV ′

θ
,

we have, for an infinitely small change,

dΨ′ = dΦ′ − dU ′ + p dV ′ + V ′ dp

θ
+
U ′ + pV ′

θ2
dθ.

Under the assumption that the change is produced only by vari-
ations of p and theta, and not by that of the masses M ′

1, M
′
2, . . . ,
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M ′
α, equation (60) gives

dΦ′ =
dU ′ + p dV ′

θ
,

and, therefore,

dΨ′ =
U ′ + pV ′

θ2
dθ − V ′ dp

θ
,

whence
∂Ψ′

∂θ
=
U ′ + pV ′

θ2
, and

∂Ψ′

∂p
= −V

′

θ
,

and for the system, as the sum of all the phases,

∂Ψ

∂θ
=
U + pV

θ2
, and

∂Ψ

∂p
= −V

θ
. (150)

§ 211. These relations may be used to determine how the
equilibrium depends on the temperature and pressure. For this
purpose we shall distinguish between two different kinds of in-
finitely small changes. The notation δ will refer, as hitherto, to
a change of the masses M ′

1, M
′
2, . . . , Mβ

α , consistent with the
given external conditions, and, therefore, consistent with the
equations (148), temperature and pressure being kept constant,
i.e. δθ = 0 and δp = 0. The state, to which this variation leads,
need not be one of equilibrium, and the equations (149) need
not, therefore, apply to it. The notation d, on the other hand,
will refer to a change from one state of equilibrium to another,
only slightly different from it. All external conditions, includ-
ing temperature and pressure, may be changed in any arbitrary
manner.
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The problem is now to find the conditions of equilibrium of
this second state, and to compare them with those of the original
state. Since the condition of equilibrium of the first state is

δΨ = 0,

the condition for the second state is

δ(Ψ + dΨ) = 0,

hence
δ dΨ = 0. (151)

But

dΨ =
∂Ψ

∂θ
dθ +

∂Ψ

∂p
dp+

β∑ ∂Ψ′

∂M ′
1

dM ′
1 +

∂Ψ′

∂M ′
2

dM ′
2 + . . .

where
∑

denotes the summation over all the β phases of the
system, while the summation over the α constituents of a single
phase is written out at length. This becomes, by (150),

dΨ =
U + pV

θ2
− V

θ
dp+

β∑ ∂Ψ′

∂M ′
1

dM ′
1 +

∂Ψ′

∂M ′
2

dM ′
2 + . . . .

The condition of equilibrium (151) therefore becomes

δU + p δV

θ2
dθ − δV

θ
dp+

β∑
dM ′

1 δ
∂Ψ′

∂M ′
1

+ dM ′
2 δ

∂Ψ′

∂M ′
2

+ · · · = 0. (152)
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All variations of dθ, dp, dM1, dM
′
2, . . . disappear because δθ = 0

and δp = 0, and because in the sum

∂Ψ′

∂M ′
1

δdM ′
1 +

∂Ψ′

∂M ′
2

δdM ′
2 + . . .

+
∂Ψ′′

∂M ′′
1

δdM ′′
1 +

∂Ψ′′

∂M ′′
2

δdM ′′
2 + . . .

+ . . .

+
∂Ψβ

∂Mβ
1

δdMβ
1 +

∂Ψβ

∂Mβ
2

δdMβ
2 + . . .

each vertical column vanishes. Taking the first column for ex-
ample, we have, by (149),

∂Ψ′

∂M ′
1

=
∂Ψ′′

∂M ′′
1

= · · · = ∂Ψβ

∂Mβ
1

,

and also, by (148),

δdM ′
1 + δdM ′′

1 + · · ·+ δdMβ
1

= d(δM ′
1 + δM ′′

1 + · · ·+ δMβ
1 ) = 0.

Furthermore, since, by the first law, δU + p δV represents Q,
the heat absorbed by the system during the virtual change, the
equation (152) may also be written

Q

θ2
dθ − δV

θ
dp+

β∑
dM ′

1 δ
∂Ψ′

∂M ′
1

+ dM ′
2 δ

∂Ψ′

∂M ′
2

+ · · · = 0. (153)

This equation shows how the equilibrium depends on the tem-
perature, and the pressure, and on the masses of the independ-
ent constituents of the system. It shows, in the first place, that
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the influence of the temperature depends essentially on the heat
effect which accompanies a virtual change of state. If this be
zero, the first term vanishes, and a change of temperature does
not disturb the equilibrium. If Q change sign, the influence of
the temperature is also reversed. It is quite similar with regard
to the influence of the pressure, which, in its turn, depends es-
sentially on the change of volume, δV , produced by a virtual
isothermal and isopiestic change of state.

§ 212. We shall now apply the equation (153) to several
special cases; first, to those of perfect heterogeneous equilibrium,
which are characterized (§ 206) by the relation

β = α + 1.

The internal nature of all the phases, including the pressure, is
determined by the temperature alone. An isothermal, infinitely
slow compression, therefore, changes only the total masses of
the phases, but does not change either the composition or the
pressure. We shall choose a change of this kind as the virtual
change of state. In this special case it leads to a new state of
equilibrium. The internal nature of all the phases, as well as the
temperature and pressure, remain constant, and therefore the

variations of the functions
∂Ψ′

∂M ′
1

,
∂Ψ′

∂M ′
2

, . . . are all equal to zero,

since these quantities depend only on the nature of the phases.
The equation (153) therefore becomes

dp

dθ
=

Q

θ δV
. (154)

This means that the heat effect in a variation that leaves the
composition of all phases unchanged, divided by the change of
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volume of the system and by the absolute temperature, gives the
rate of change of the equilibrium pressure with the temperature.
Where application of heat increases the volume, as in the case
of evaporation, the equilibrium pressure increases with temper-
ature; in the opposite case, as in the melting of ice, it decreases
with increase of temperature.

§ 213. In the case of one independent constituent (α = 1,
and β = 2), equation (154) leads immediately to the laws dis-
cussed at length in the preceding chapter; namely, those con-
cerning the heat of vaporization, of fusion, and of sublimation.
If, for instance, the liquid form the first phase, the vapour the
second phase, and L denote the heat of vaporization per unit
mass, we have

Q = L δM ′′,

δV = (v′′ − v′) δM ′′,

where v′ and v′′ are the specific volumes of liquid and vapour,
and δM ′′ the mass of vapour formed during the isothermal and
isopiestic change of state. Hence, by (154),

L = θ
dp

dθ
(v′′ − v′),

which is identical with the equation (111).
This, of course, applies to chemical changes as well, whenever

the system under consideration contains one constituent in two
distinct phases; for example, to the vaporization of ammonium
chloride (first investigated with regard to this law by Horst-
mann), which decomposes into hydrochloric acid and ammonia;
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or to the vaporization of ammonium carbamate, which decom-
poses into ammonia and carbon dioxide. Here L of our last
equation denotes the heat of dissociation, and p the dissociation
pressure, which depends only on the temperature.

§ 214. We shall also consider the perfect heterogeneous equi-
librium of two independent constituents (α = 2, β = 3); for ex-
ample, water (suffix 1) and a salt (suffix 2) in three phases; the
first, an aqueous solution (M ′

1 the mass of the water, M ′
2 that of

the salt); the second, water vapour (mass M ′′
1 ); the third, solid

salt (mass M ′′′
2 ). For a virtual change, therefore,

δM ′
1 + δM ′′

1 = 0, and δM ′
2 + δM ′′′

2 = 0.

According to the phase rule, the concentration of the solution(
M ′

2

M ′
1

= c

)
, as well as the vapour pressure (p) is a function of

the temperature alone. By (154), the heat absorbed (θ, p, c
remaining constant) is

Q = θ · dp
dθ
· δV. (155)

Let the virtual change consist in the evaporation of a small
quantity of water,

δM ′′
1 = −δM ′

1.

Then, since the concentration also remains constant, the quant-
ity of salt

δM ′′′
2 = −δM ′

2 = −c δM ′
1 = c δM ′′

1

is precipitated from the solution. All variations of mass have
here been expressed in terms of δM ′′

1 .
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The total volume of the system

V = v′(M ′
1 +M ′

2) + v′′M ′′
1 + v′′′M ′′′

2 ,

where v′, v′′, and v′′′ are the specific volumes of the phases, is
increased by

δV = v′(δM ′
1 + δM ′

2) + v′′ δM ′′
1 + v′′′ δM ′′′

2 ,

δV =
[
(v′′ + cv′′′)− (1 + c)v′

]
δM ′′

1 . (156)

If L be the quantity of heat that must be applied to evapor-
ate unit mass of water from the solution, and to precipitate the
corresponding quantity of salt, under constant pressure, temper-
ature, and concentration, then the equation (155), since

Q = L δM ′′
1 ,

becomes

L = θ
dp

dθ

(
v′′ + cv′′′ − (1 + c)v′

)
.

A useful approximation is obtained by neglecting v′ and
v′′′, the specific volumes of the liquid and solid, in comparison
with v′′, that of the vapour, and considering the latter as a per-
fect gas. By (14),

v′′ =
R

m
· θ
p

(R = gas constant, m = the molecular weight of the vapour)
and we obtain

L =
R

m
θ2 · d log p

dθ
. (157)
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§ 215. Conversely, L is at the same time the quantity of
heat given out when unit mass of water vapour combines, at
constant temperature and pressure, with the quantity of salt
necessary to form a saturated solution. This process may be
accomplished directly, or in two steps, viz. by condensing unit
mass of water vapour into pure water, and then dissolving the
salt in the water. According to the first law of thermodynamics,
since the initial and final states are the same in both cases, the
sum of the heat given out and the work done is the same.

In the first case the heat given out is L, the work done,

−p δV

δM ′′
1

; and the sum of these, by the approximation used

above, is
R

m
θ2 · d log p

dθ
− pv′′. (158)

To calculate the same sum for the second case, we must in
the first place note that the vapour pressure of a solution is
different from the vapour pressure of pure water at the same
temperature. It will, in fact, in no case be greater, but smaller,
otherwise the vapour would be supersaturated. Denoting the
vapour pressure of pure water at the temperature θ by p0, then
p < p0.

We shall now bring, by isothermic compression, unit mass
of water vapour from pressure p and specific volume v′′ to pres-
sure p0 and specific volume v′′0 , i.e. to a state of saturation. Work
is thereby done on the substance, and heat is given out. The sum
of both, which gives the decrease of the energy of the vapour,
is zero, if we again assume that the vapour behaves as a perfect
gas, i.e. that its energy remains constant at constant temper-
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ature. If we then condense the water vapour of volume v′′0 , at
constant temperature θ and constant pressure p0, into pure wa-
ter, the sum of the heat given out and work spent at this step
is, by equation (112),

R

m
θ2 · d log p0

dθ
− p0v′′0 . (159)

No appreciable external effects accompany the further change of
the liquid water from pressure p0 to pressure p.

If, finally, we dissolve salt sufficient for saturation in the
newly formed unit of water, at constant temperature θ and con-
stant pressure p, the sum of the heat and work is simply the
heat of solution

λ. (160)

By the first law, the sum of (159) and (160) must be equal
to (158),

R

m
θ2 · d log p0

dθ
− p0v′′0 + λ =

R

m
θ2 · d log p

dθ
− pv′′;

or, since, by Boyle’s law p0v
′′
0 = pv′′,

λ =
R

m
θ2 ·

d log
p

p0
dθ

. (161)

This formula, first established by Kirchhoff, gives the heat
evolved when salt sufficient for saturation is dissolved in 1 gr.
of pure water.
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To express λ in calories, R must be divided by the mechanical

equivalent of heat, J . By (34),
R

J
= 1.97, and since m = 18, we

have

λ = 0.11θ2 ·
d log

p

p0
dθ

cal.

It is further worthy of notice that p, the vapour pressure of a
saturated solution, is a function of the temperature alone, since
c, the concentration of a saturated solution, changes in a definite
manner with the temperature.

The quantities neglected in this approximation may, if ne-
cessary, be put in without any difficulty.

§ 216. We proceed now to the important case of two inde-
pendent constituents in two phases (α = 2, β = 2). We assume,
for the present, that both constituents are contained in both
phases in appreciable quantity, having the masses M ′

1, M
′
2 in

the first; M ′′
1 , M ′′

2 , in the second phase. The internal variables
are the temperature, the pressure, and the concentrations of the
second constituent in both phases;

c′ =
M ′

2

M ′
1

and c′′ =
M ′′

2

M ′′
1

. (162)

According to the phase rule, two of the variables, θ, p, c′, c′′, are
arbitrary.

Equation (153) leads to the following law regarding the shift
of the equilibrium corresponding to any change of the external
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conditions:

Q

θ2
dθ − δV

θ
dp+ dM ′

1 δ
∂Ψ′

∂M ′
1

+ dM ′
2 δ

∂Ψ′

∂M ′
2

+ dM ′′
1 δ

∂Ψ′′

∂M ′′
1

+ dM ′′
2 δ

∂Ψ′′

∂M ′′
2

= 0. (163)

Here, for the first phase,

δ
∂Ψ′

∂M ′
1

=
∂2Ψ′

∂M ′2
1

δM ′
1 +

∂2Ψ′

∂M ′
1 ∂M

′
2

δM ′
2,

δ
∂Ψ′

∂M ′
1

=
∂2Ψ′

∂M ′
1 ∂M

′
2

δM ′
1 +

∂2Ψ′

∂M ′2
2

δM ′
2.





(164)

Certain simple relations hold between the derived functions of Ψ′

with respect to M ′
1 and M ′

2. For, since, by (144),

Ψ′ = M ′
1

∂Ψ′

∂M ′
1

+M ′
2

∂Ψ′

∂M ′
2

,

partial differentiation with respect to M ′
1 and M ′

2 gives

0 = M ′
1

∂2Ψ′

∂M ′2
1

+M ′
2

∂2Ψ′

∂M ′
1 ∂M

′
2

,

0 = M ′
1

∂2Ψ′

∂M ′
1 ∂M

′
2

+M ′
2

∂2Ψ′

∂M ′2
2

.

If we put, for shortness,

M ′
1

∂2Ψ′

∂M ′
1 ∂M

′
2

= ϕ′, (165)
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a quantity depending only on the nature of the first phase, on
θ, p, and c′, and not on the masses M ′

1 and M ′
2 individually,∗ we

have
∂2Ψ′

∂M ′
1 ∂M

′
2

=
ϕ′

M ′
1

,

∂2Ψ′

∂M ′2
1

= −M
′
2

M ′2
1

· ϕ′,

∂2Ψ′

∂M ′2
2

= − ϕ′

M ′
2

.





(166)

Analogous equations hold for the second phase if we put

ϕ′′ = M ′′
1 ·

∂Ψ′′

∂M ′′
1 ∂M

′′
2

.

§ 217. With respect to the quantities ϕ′ and ϕ′′ all we can
immediately settle is their sign. According to § 147, Ψ is a
maximum in stable equilibrium if only processes at constant
temperature and constant pressure be considered. Hence

δ2Ψ < 0. (167)

But
Ψ = Ψ′ + Ψ′′,

whence

δΨ =
∂Ψ′

∂M ′
1

δM ′
1 +

∂Ψ′

∂M ′
2

δM ′
2 +

∂Ψ′′

∂M ′′
1

δM ′′
1 +

∂Ψ′′

∂M ′′
2

δM ′′
2

∗The general integral of Ψ′ = M ′1
∂Ψ′

∂M ′1
+M ′2

∂Ψ′

∂M ′2

is Ψ′ = M ′2f

(
M ′1
M ′2

)
.—Tr.



any number of independent constituents. 237

and

δ2Ψ =
∂2Ψ′

∂M ′2
1

δM ′2
1 + 2

∂2Ψ′

∂M ′
1 ∂M

′
2

δM ′
1 δM

′
2 +

∂2Ψ′

∂M ′2
2

δM ′2
2

+
∂2Ψ′′

∂M ′′2
1

δM ′′2
1 + 2

∂2Ψ′′

∂M ′′
1 ∂M

′′
2

δM ′′
1 δM

′′
2 +

∂2Ψ′′

∂M ′′2
2

δM ′′2
2 .

If we introduce the quantities ϕ′ and ϕ′′, then

δ2Ψ = −M ′
2ϕ
′
(
δM ′

1

M ′
1

− δM ′
2

M ′
2

)2

−M ′′
2ϕ
′′
(
δM ′′

1

M ′′
1

− δM ′′
2

M ′′
2

)2

.

This relation shows that the inequality (167) is satisfied, and
only then, if both ϕ′ and ϕ′′ are positive.

§ 218. There are on the whole two kinds of changes possible,
according as the first or the second constituent passes from the
first to the second phase. We have, for the first,

δM ′
1 = −δM ′′

1 ; δM ′
2 = δM ′′

2 = 0; (168)

and for the second,

δM ′
1 = δM ′′

1 = 0; δM ′
2 = −δM ′′

2 .

We shall distinguish Q, the heat absorbed, and δV , the change
of volume, in these two cases by the suffixes 1 and 2. In the first
case, the law for the displacement of the equilibrium, by (163),
(164), (168), (166), and (162), reduces to

Q1

θ2
dθ − δ1V

θ
dp− δM ′′

1 (ϕ′ dc′ − ϕ′′ dc′′) = 0
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and, introducing for shortness the finite quantities

L1 =
Q1

δM ′′
1

, s1 =
δ1V

δM ′′
1

, (169)

i.e. the ratios of the heat absorbed and of the change of volume
to the mass of the first constituent, which passes from the first
to the second phase, we have

L1

θ2
dθ − s1

θ
dp− ϕ′ dc′ + ϕ′′ dc′′ = 0. (170)

Similarly, for the second constituent passing into the second
phase, we get

L2

θ2
dθ − s2

θ
dp− ϕ′ dc

′

c′
+ ϕ′′

dc′′

c′′
= 0. (171)

These are the two relations connecting the four differentials dθ,
dp, dc′, dc′′ in any displacement of the equilibrium.

§ 219. To show the application of these laws, let us consider
a mixture of two liquids (water and alcohol) in two phases, the
first a liquid, the second a vapour. The phase rule leaves two
of the variables θ, p, c′, c′′ arbitrary. The pressure p, and the
concentration c′′ of the vapour, for instance, are determined by
the temperature and the concentration c′ of the liquid mixture.
Accordingly, for any changes dθ and dc′ we have, from (170)
and (171),

dp =

(
c′′

c′
− 1

)
θ2ϕ′ dc′ + (L1 + c′′L2) dθ

(s1 + c′′s2)θ
,
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dc′′ =

(
1

s1
+

1

c′s2

)
ϕ′ dc′ −

(
L1

s1
− L2

s2

)
· dθ
θ2(

1

s1
+

1

c′′s2

)
ϕ′′

.

Of the many conclusions to be drawn from these equations, we
mention only the following:

Along an isotherm (dθ = 0) the equations become

dp =

(
c′′

c′
− 1

)
θϕ′ dc′

s1 + c′′s2
, (172)

dc′′ =

(
1

s1
+

1

c′s2

)

(
1

s1
+

1

c′′s2

) · ϕ
′

ϕ′′
dc′. (173)

The vapour pressure p may rise or fall with increasing concen-
tration. When p shows a maximum or minimum value, as it
does according to Konowalow for a 77 : 23 mixture of propyl

alcohol and water, then
dp

dc′
vanishes, and, from equation (172),

c′ = c′′, i.e. the percentage composition of the liquid and the va-
pour is the same, or the liquid boils at constant concentration.
But if, along an isotherm, p varies with c′, the concentration of
the vapour will differ from that of the liquid; in fact, the con-
centration of the second constituent in the vapour will be more
or less than in the liquid (c′′ > or < c′), according as the vapour
pressure p rises or falls with increasing concentration. This is
an immediate deduction from equation (172) if we bear in mind
that ϕ′, s1, s2, and c′′ are always positive.
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The equation (173) shows that along an isotherm the con-
centration of both phases always changes in the same sense.

§ 220. In the following applications we shall restrict
ourselves to the case in which the second constituent occurs
only in the first phase,

c′′ = 0,

and
∴ dc′′ = 0. (174)

The first constituent which occurs along with the second in the
first phase, and pure in the second, will be called the solvent ; the
second, the dissolved substance. By (174), the equation (171) is
identically satisfied, and from (170) there remains

L

θ2
dθ − s

θ
dp− ϕdc = 0, (175)

if we omit suffixes and dashes for simplicity.
We shall take, first, a solution of a non-volatile salt in con-

tact with the vapour of the solvent, and investigate the equa-
tion (175) in three directions by keeping in turn the concentra-
tion c, the temperature θ, and the pressure p constant.

§ 221. Concentration Constant: dc = 0.—The relation
between the vapour pressure and the temperature is, by (175),

(
∂p

∂θ

)

c

=
L

θ · s
. (176)

Here L may be called briefly the heat of vaporization of the
solution. If, instead of regarding L as the ratio of two infin-
itely small quantities, we take it to be the heat of vaporization
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per unit mass of the solvent, then the mass of the solvent must
be assumed so large that the concentration is not appreciably
altered by the evaporation of unit mass. The quantity s may
generally be put = v, the specific volume of the vapour. Assum-
ing, further, that the laws of Boyle and Gay-Lussac hold for the
vapour, we get

s = v =
R

m
· θ
p

(177)

and, by (176),

L =
R

m
θ2
(
∂ log p

∂θ

)

c

.

On the other hand, L is also the quantity of heat given out when
unit mass of the vapour of the solvent combines at constant
temperature and pressure with a large quantity of a solution of
concentration c. This process may be performed directly, or unit
mass of the vapour may be first condensed to the pure solvent
and then the solution diluted with it.

In the first case the sum of the heat given out and the work
spent is

L− pv =
R

m
θ2
(
∂ log p

∂θ

)

c

− pv.

In the second case, by the method used in § 215 we obtain,
as the sum of the heat given out and the work spent during
condensation and dilution,

R

m
θ2
d log p0
dθ

− p0v0 + ∆,

where p0 is the pressure, v the specific volume of the vapour of
the solvent in contact with the pure liquid solvent, ∆ the heat
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of dilution of the solution, i.e. the heat given out on adding unit
mass of the solvent to a large quantity of the solution of concen-
tration c. Both the above expressions being equal according to
the first law, we obtain, on applying Boyle’s law,

∆ =
R

m
θ2



∂ log

p

p0
∂θ



c

, (178)

which is Kirchhoff’s formula for the heat of dilution.
The quantities here neglected, by considering the vapour a

perfect gas, and its specific volume large in comparison with that
of the liquid, may readily be taken into account when necessary.

The similarity of the expressions for ∆, the heat of dilution,
and for λ, the heat of saturation (161), is only external, since in
this case the solution may be of any concentration, and therefore
may be differentiated with respect to the temperature, c being
kept constant, while in (161) the concentration of a saturated
solution changes with temperature in a definite manner.

§ 222. Since ∆ is small for small values of c (dilute solutions,
§ 97), then, according to (178), the ratio of the vapour pressure
of a dilute solution of fixed concentration to the vapour pressure
of the pure solvent is practically independent of the temperature
(Babo’s law).

§ 223. Temperature Constant: dθ = 0.—The relation
between the vapour pressure (p) and the concentration (c) of
the solution is, according to (175),

(
∂p

∂c

)

θ

= −θϕ
s
. (179)
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Neglecting the specific volume of the liquid in comparison with
that of the vapour, and considering the latter a perfect gas of
molecular weight m, equation (177) gives

(
∂p

∂c

)

θ

= −mpθ
R

,

or (
∂ log p

∂c

)

θ

= −m
R
ϕ.

Since ϕ is always positive (§ 217), the vapour pressure must de-
crease with increasing concentration. This proposition furnishes
a means of distinguishing between a solution and an emulsion.
In an emulsion the number of particles suspended in the solution
has no influence on the vapour pressure.

So long as the quantity ϕ is undetermined, nothing further
can be stated with regard to the general relation between the
vapour pressure and the concentration.

§ 224. As we have p = p0 when c = 0 (pure solvent), p− p0
is small for small values of c. We may, therefore, put

∂p

∂c
=
p− p0
c− 0

=
p− p0
c

.

Hence, by (179),

p− p0 =
cθϕ

s
(180)

and substituting for s, as in (177), the specific volume of the
vapour, considered a perfect gas, we get

p− p0
p

=
cmϕ

R
. (181)
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This means that the relative decrease of the vapour pressure
is proportional to the concentration of the solution (Wüllner’s
law). For further particulars, see § 270.

§ 225. Pressure Constant: dp = 0.—The relation
between the temperature (boiling point) and the concentra-
tion is, by (175), (

∂θ

∂c

)

p

=
θ2ϕ

L
. (182)

Since ϕ is positive, the boiling point rises with increasing con-
centration. By comparing this with the formula (179) for the
decrease of the vapour pressure, we find that any solution gives

(
∂θ

∂c

)

p

:

(
∂p

∂c

)

θ

= −θs
L
,

i.e. for an infinitely small increase of the concentration the rise
in the boiling point (at constant pressure) is to the decrease of
the vapour pressure (at constant temperature) as the product of
the absolute temperature and the specific volume of the vapour
is to the heat of vaporization of the solution.

Remembering that this relation satisfies the identity

(
∂θ

∂c

)

p

:

(
∂p

∂c

)

θ

= −
(
∂θ

∂p

)

c

,

we come immediately to the equation (176).

§ 226. Let θ0 be the boiling point of the pure solvent (c = 0),
then, for some values of c, the difference between θ and θ0 will
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be small, and we may put

∂θ

∂c
=
θ − θ0
c− 0

=
θ − θ0
c

,

whereby the equation becomes

θ − θ0 =
cθ2ϕ

L
. (183)

This means that the elevation of the boiling point is propor-
tional to the concentration of the solution. For further details,
see § 269.

§ 227. Let the second phase consist of the pure solvent in
the solid state instead of the gaseous state, as happens in the
freezing of an aqueous salt solution or in the precipitation of salt
from a saturated solution. In the latter case, in conformity with
the stipulations of § 220, the salt will be regarded as the first con-
stituent (the solvent), and water as the second constituent (the
dissolved substance). The equation (175) is then directly ap-
plicable, and may be discussed in three different ways. We may
ask how the freezing point or the saturation point of a solution
of definite concentration changes with the pressure (dc = 0); or,
how the pressure must be changed, in order that a solution of
changing concentration may freeze or become saturated at con-
stant temperature (dθ = 0); or, finally, how the freezing point or
the saturation point of a solution under given pressure changes
with the concentration (dp = 0). In the last and most important
case, if we denote the freezing point or the saturation point as
a function of the concentration by θ′, to distinguish it from the
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boiling point, equation (175) gives
(
∂θ′

∂c

)

p

=
θ2ϕ

L
,

L being the heat absorbed when unit mass of the solvent separ-
ates as a solid (ice, salt) from a large quantity of the solution of
concentration c. Since L is often negative, we may put L = −L′
and call L′ the heat of solidification of the solution or the heat
of precipitation of the salt. We have, then,

(
∂θ′

∂c

)

p

= −θ
2ϕ

L′
. (184)

The heat of solidification (L′) of a salt solution is always positive,
hence the freezing point is lowered by an increase of concentra-
tion c. On the other hand, if the heat of precipitation (L′) of
a salt from a solution be positive, the saturation point theta′

is lowered by an increase of the mass of water, or rises with
an increase of the concentration of the salt. If L′ be negative,
the saturation point is lowered by an increase of the concentra-
tion of the salt. Should we prefer to designate by c, not the
amount of water, but the amount of salt in a saturated solution,
then, according to the definition of c in (162) and of ϕ in (165),

we should have
1

c
replacing c in (184) and cϕ replacing ϕ, and

therefore (
∂θ′

∂c

)

p

=
θ2ϕ

cL′
. (185)

Here c and ϕ have the same meaning as in equation (184), which
refers to the freezing point of a solution.
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§ 228. Let θ′0 be the freezing point of the pure solvent
(c = 0), then, for small values of c, θ′ will be nearly = θ′0, and
we may put

∂θ′

∂c
=
θ′ − θ′0
c− 0

=
θ′ − θ′0
c

.

Equation (184) then becomes

θ′0 − θ′ =
cθ2ϕ

L′
, (186)

which means that the lowering of the freezing point is propor-
tional to the concentration. For further particulars, see § 271.

§ 229. The positive quantity, ϕ, which occurs in all these
formulæ, has a definite value for a solution of given c, θ, and p,
and is independent of the nature of the second phase. Our last
equations, therefore, connect in a perfectly general way the laws
regarding the lowering of the vapour pressure, the elevation of
the boiling temperature, the depression of the freezing point, and
the change of the saturation point. Only one of these phenom-
ena need be experimentally investigated in order to calculate ϕ,
and by means of the value thus determined the others may be
deduced for the same solution.

We shall now consider a further case for which ϕ is of fun-
damental importance, viz. the state of equilibrium which ensues
when the pure liquid solvent forms the second phase, not in con-
tact with a solution, for no equilibrium would thus be possible,
but separated from it by a membrane, permeable to the solvent
only. It is true that for no solution can perfectly semipermeable
membranes of this character be manufactured. In fact, the fur-
ther development of this theory (§ 259) will exclude them as a
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matter of principle, for in every case the dissolved substance will
also diffuse through the membrane, though possibly at an ex-
tremely slow rate. For the present it is sufficient that we may,
without violating a law of thermodynamics, assume the velocity
of diffusion of the dissolved substance as small as we please in
comparison with that of the solvent. This assumption is justified
by the fact that semipermeability may be very closely approx-
imated in the case of many substances. The error committed in
putting the rate of diffusion of a salt through such a membrane
equal to zero, falls below all measurable limits. An exactly sim-
ilar error is made in assuming that a salt does not evaporate
or freeze from a solution, for, strictly speaking, this assumption
is not admissible (§ 259). The condition of equilibrium of two
phases separated by a semipermeable membrane is contained in
the general thermodynamical condition of equilibrium (145),

δΨ′ + δΨ′′ = 0, (187)

which holds for virtual changes at constant temperature and
pressure in each phase. The only difference between this case
and free contact is, that the pressures in the two phases may be
different. Pressure always means hydrostatic pressure as meas-
ured by a manometer. If, in the general equation (76), we put

W = −p′ δV ′ − p′′ δV ′′,

it immediately follows that (187) is the condition of equilibrium.
The further conclusions from (187) are completely analogous to
those which are derived, when there is a free surface of contact.
Corresponding to (163) we have for any displacement of the
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equilibrium

Q

θ2
dθ− δV ′

θ
dp′ − δV ′′

θ
dp′′ + dM ′

1 δ
∂Ψ′

∂M ′
1

+ dM ′
2 δ

∂Ψ′

∂M ′
2

+ · · · = 0.

Since the constituent 2 occurs only in the first phase, we get,
instead of (175),

L

θ2
dθ − s′

θ
dp′ − s′′

θ
dp′′ − ϕdc = 0. (188)

Here, as in § 221, L is the “heat of removal” of the solvent
from the solution, i.e. the heat absorbed when, at constant tem-
perature and constant pressures p′ and p′′, unit mass of the
solvent passes through the semipermeable membrane from a
large quantity of the solution to the pure solvent. The change
of volume of the solution during this process is s′ (negative),
that of the pure solvent s′′ (positive). In the condition of equi-
librium (188), three of the four variables θ, p′, p′′, c remain
arbitrary, and the fourth is determined by their values.

Consider the pressure p′′ in the pure solvent as given and
constant, say one atmosphere, then dp′′ = 0. If, further, we
put dθ = 0 and dc not equal to zero, we are then considering
solutions in which the concentration varies, but the temperature
and the pressure in the pure solvent remains the same. Then,
by (188), (

∂p′

∂c

)

θ

= −θϕ
s′
.

Since ϕ > 0, and s′ < 0, p′ the pressure in the solution increases
with the concentration.
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The difference of the pressures in the two phases, p′−p′′ = P ,
has been called the osmotic pressure of the solution. Since p′′ has
been assumed constant, we may write

(
∂P

∂c

)

θ

= −θϕ
s′
. (189)

Thus the laws of the osmotic pressure have also been ex-
pressed in terms of ϕ, which controls those of the depression
of the freezing point, the elevation of the boiling point, etc.
Since ϕ is positive, the osmotic pressure increases with increas-
ing concentration, and also, since p′ − p′′ vanishes when c = 0,
the osmotic pressure is necessarily positive.

For small values of c,

∂P

∂c
=
P − 0

c− 0
=
P

c
,

and −s′ is nearly equal to v the specific volume of the solution.
It therefore follows from (189) that

P =
cθϕ

v
. (190)

A further discussion of this question will be found in § 272.

§ 230. In the preceding paragraphs we have expressed the
laws of equilibrium of several systems, that fulfil the conditions
of § 220, in terms of a quantity ϕ which is characteristic for the
thermodynamical behaviour of a solution. Starting from the
two equations (170) and (171), we find that all the relations in
question depend on ϕ′ and ϕ′′. A better insight into the nature
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of these quantities is gained by extending to the liquid state
the idea of the molecule, hitherto applied only to gases. This
step is taken in the next two chapters, and it appears that the
manner in which the idea applies is uniquely determined by the
propositions of thermodynamics, which have been given.

§ 231. Just as the conditions of equilibrium (170) and (171)
were deduced for two independent constituents in two phases
from the general relation (153), so in the same way an entirely
analogous deduction may be made in the general case.

We shall conclude this chapter by giving, briefly, the results
for a system of α independent constituents in β phases.

Denoting the concentrations of the independent constituents,
relative to one fixed constituent 1, by

M ′
2

M ′
1

= c′2;
M ′

3

M ′
1

= c′3;
M ′

4

M ′
1

= c′4; . . .

M ′′
2

M ′′
1

= c′′2;
M ′′

3

M ′′
1

= c′′3;
M ′′

4

M ′′
1

= c′′4; . . .

. . . . . . . . .

the condition that, by any infinitely small change of the system:
dθ, dp, dc′2, dc

′
3, dc

′
4, . . . , dc′′2, dc′′3, dc′′4, . . . , the equilibrium may

remain stable with regard to the passage of the constituent 1
from the phase denoted by one dash to the phase denoted by
two dashes is

L1

θ2
dθ − s1

θ
dp+ (ϕ′′2 dc

′′
2 − ϕ′2 dc′2) + (ϕ′′3 dc

′′
3 − ϕ′3 dc′3) + · · · = 0,
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where, analogous to (165),

ϕ′2 = M ′
1 δ

∂2Ψ′

∂M ′
1 ∂M

′
2

; ϕ′3 = M ′
1 δ

∂2Ψ′

∂M ′
1 ∂M

′
3

; . . .

ϕ′′2 = M ′′
1 δ

∂2Ψ′′

∂M ′′
1 ∂M

′′
2

; ϕ′′3 = M ′′
1 δ

∂2Ψ′′

∂M ′′
1 ∂M

′′
3

; . . .

and L1, s1 denote the heat absorbed, and the increase of volume
of the system during the isothermal and isopiestic transference
of unit mass of constituent 1 from a large quantity of the phase
denoted by one dash to a large quantity of the phase denoted
by two dashes. The corresponding conditions of equilibrium for
any possible passage of any constituent from any one phase to
any other phase may be established in the same way.



CHAPTER IV.

GASEOUS SYSTEM.

§ 232. The relations, which have been deduced from the gen-
eral condition of equilibrium (79) for the different properties
of thermodynamical equilibria, rest mainly on the relations
between the characteristic function Ψ, the temperature, and the
pressure as given in the equations (150). It will be impossible
to completely answer all questions regarding equilibrium until
can be expressed in its functional relation to the masses of the
constituents in the different phases. The introduction of the
molecular weight serves this purpose. Having already defined
the molecular weight of a chemically homogeneous gas as well
as the number of molecules of a mixture of gases by Avogadro’s
law, we shall turn first to the investigation of a system consisting
of one gaseous phase.

The complete solution of the problem consists in expressing
Ψ in terms of θ, p, and n1, n2, n3, . . . , the number of all the
different kinds of molecules in the mixture.

Since we have, in general, by (75),

Ψ = Φ− U + pV

θ
,

we are required to express the entropy Φ, the energy U , and the
volume V as functions of the above independent variables. This
can be done, in general, on the assumption that the mixture
obeys the laws of perfect gases. Such a restriction will not, in
most cases, lead to appreciable errors. Even this assumption
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may be set aside by special measurement of the quantities Φ, U ,
and V , as is given later. For the present, however, perfect gases
will be assumed.

§ 233. The laws of Boyle, Gay-Lussac, and Dalton determ-
ine the volume of the mixture, for equation (16) gives

V =
Rθ

p
(n1 + n2 + . . . ) =

Rθ

p

∑
n1. (191)

By the first law of thermodynamics, the energy U of a mixture
of gases is given by the energies of its constituents, for, accord-
ing to this law, the energy of the system remains unchanged,
no matter what internal changes take place, provided there are
no external effects. Experience shows that when diffusion takes
place between a number of gases at constant temperature and
pressure, neither does the volume change, nor is heat absorbed
or evolved. The energy of the system, therefore, remains con-
stant during the process. Hence, the energy of a mixture of
perfect gases is the sum of the energies of the gases at the same
temperature and pressure. Now the energy U1 of n1 molecules
of a perfect gas depends only on the temperature; it is, by (35),

U1 =
∑
n1(cv1θ + h1), (192)

where cv1 is the molecular heat of the gas at constant volume,
and h1 is a constant. Hence the total energy of the mixture is

U =
∑
n1(cv1θ + h1). (193)

§ 234. We have now to determine the entropy Φ as a func-
tion of θ, p, and n1, n2, . . . the number of molecules. Φ, in so
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far as it depends on θ and p, may be calculated from the equa-
tion (60),

dΦ =
dU + p dV

θ
,

where the differentials correspond to variations of θ and p, but
not of the number of molecules.

Now, by (193),

dU =
∑
n1cv1 dθ,

and, by (191),

dV = R
∑
n1 d

(
θ

p

)
,

∴ dΦ =
∑
n1

(
cv1

dθ

θ
+
Rdθ

θ
− Rdp

p

)
,

and, by integration,

Φ =
∑
n1

(
cv1 log θ +R log

θ

p

)
+ C. (194)

The constant of integration C is independent of θ and p, but may
depend on the composition of the mixture, i.e. on the numbers
n1, n2, n3, . . . . The investigation of this relation forms the most
important part of our problem. The determination of the con-
stant is not, in this case, a matter of definition. It can only be
determined by applying the second law of thermodynamics to a
reversible process which brings about a change in the compos-
ition of the mixture. A reversible process produces a definite
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change of the entropy which may be compared with the simul-
taneous changes of the number of molecules, and thus the rela-
tion between the entropy and the composition determined. If we
select a process devoid of external effects either in work or heat,
then the entropy remains constant during the whole process. We
cannot, however, use the process of diffusion, which leads to the
value of U ; for diffusion, as might be expected, and as will be
shown in § 238, is irreversible, and therefore leads only to the
conclusion that the entropy of the system is thereby increased.
There is, however, a reversible process at our disposal, which
will change the composition of the mixture, viz. the separation
by a semipermeable membrane, as introduced and established
in § 229.

§ 235. Before we can apply a semipermeable membrane
to the purpose in hand, we must acquaint ourselves with the
nature of the thermodynamical equilibrium of a gas in contact
with both sides of a membrane permeable to it. The membrane
will act like a bounding wall to those gases to which it is imper-
meable, and will, therefore, not introduce any special conditions.
Experience shows that a gas on both sides of a membrane per-
meable to it is in equilibrium when its partial pressures (§ 18)
are the same on both sides, quite independent of the other gases
present. This proposition is neither axiomatic nor a necessary
consequence of the preceding considerations, but it commends
itself by its simplicity, and has been confirmed without exception
in the few cases accessible to direct experiment.

A test of this kind may be established as follows: Platinum
foil at a white heat is permeable to hydrogen, but impermeable
to air. If a vessel having a platinum wall be filled with pure
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hydrogen, and hermetically sealed, and the platinum be then
heated, the hydrogen must completely diffuse out against atmo-
spheric pressure. As the air cannot enter, the vessel must finally
become completely exhausted.∗

§ 236. We shall make use of the properties of semipermeable
membranes to separate in a reversible and simple manner the
constituents of a gas mixture. Let us consider the following
example:—

Let there be four pistons in a hollow cylinder, two of them,
A and A′, in fixed positions; two, B and B′, movable in such a
way that the distance BB′ remains constant, and equal to AA′.
This is indicated by the brackets in Fig. 5. Further, let A′ (the
bottom), and B (the cover) be impermeable to any gas, while
A is permeable only to one gas (1), and B′ only to another
one (2). The space above B is a vacuum.

∗This inference was tested by me in the Physical Institute of the Univer-
sity of Munich in 1883, and was confirmed within the limits of experimental
error as far as the actual deviation from ideal conditions might lead one to
expect. As this experiment has not been published anywhere, I shall briefly
describe it here. A glass tube of about 5 mm. internal diameter, blown out
to a bulb at the middle, was provided with a stop-cock at one end. To the
other end a platinum tube 10 cm. long was fastened, and closed at the end.
The whole tube was exhausted by the mercury pump, filled with hydrogen
at ordinary atmospheric pressure, and then closed. The closed end of the
platinum portion was then heated in a horizontal position by a Bunsen
burner. The connection between the glass and platinum tubes having been
made by means of sealing-wax, had to be kept cool by a continuous current
of water to prevent the softening of the wax. After four hours the tube was
taken from the flame, cooled to the temperature of the room, and the stop-
cock opened under mercury. The mercury rose rapidly, almost completely
filling the tube, proving that the tube had been very nearly exhausted.
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A′

A

B′

B









(2)

(1)

(1) (2)

Fig. 5.

At the beginning of the process the piston B is close to A,
therefore B′ close to A′, and the space between them contains a
mixture of the two gases (1 and 2). The connected pistons B and
B′ are now very slowly raised. The gas 1 will pass into the space
opening up between A and B, and the gas 2 into that between
A′ and B′. Complete separation will have been effected when
B′ is in contact with A. We shall now calculate the external
work of this process. The pressure on the movable piston B
consists only of the pressure of the gas 1, upwards, since there is
a vacuum above B; and on the other movable piston, B′, there is
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only the partial pressure of the same gas, which acts downwards.
According to the preceding paragraph both these pressures are
equal, and since the paths of B and B′ are also equal, the total
work done on the pistons is zero. If no heat be absorbed or
given out, as we shall further assume, the energy of the system
remains constant. But, by (193), the energy of a mixture of gases
depends, like that of pure gases, on the temperature alone, so
the temperature of the system remains constant throughout.

Since this infinitely slow process is reversible, the entropy in
the initial and final states is the same, if there are no external
effects. Hence, the entropy of the mixture is equal to the sum
of the entropies which the two gases would have, if at the same
temperature each by itself occupied the whole volume of the
mixture. This proposition may be easily extended to a mixture
of any number of gases. The entropy of a mixture of gases is the
sum of the entropies which the individual gases would have, if
each at the same temperature occupied a volume equal to the total
volume of the mixture. This proposition was first established by
Gibbs.

§ 237. The entropy of a perfect gas of massM and molecular
weight m was found to be (52)

M

(
cv
m

log θ +
R

m
log v + const.

)
,

where cv is the molecular heat at constant volume, as in (192).
By the gas laws (14), the volume of unit mass is

v =
R

m
· θ
p
,
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whence the entropy is

n(cv log θ +R log
θ

p
+ k), (195)

where n =
M

m
, the number of molecules, and the constant k in-

cludes the term log
R

m
. Hence, according to Gibbs’s proposition,

the entropy of the mixture is

Φ =
∑
n1(cv1 log θ +R log

θ

p1
+ k1),

p1 being the partial pressure of the first gas in the mixture.
Now, by (8), the pressure of the mixture is the sum of the

partial pressures,
∑
p1 = p, and, by § 40, the partial pressures

are proportional to the number of molecules of each gas,

p1 : p2 : · · · = n1 : n2 : . . . .

Hence

p1 =
n1

n1 + n2 + . . .
p,

p2 =
n2

n1 + n2 + . . .
p,

. . . ,

or, if we introduce the concentrations of the different gases in
the mixture,

c1 =
n1

n1 + n2 + . . .
; c2 =

n2

n1 + n2 + . . .
;

p1 = c1p; p2 = c2p. (196)
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Thus the expression for the entropy of a mixture as a function
of θ, p, and n the number of molecules, finally becomes

Φ =
∑
n1(cv1 log θ +R log

θ

pc1
+ k1). (197)

Comparing this expression with the value of the entropy of a gas
mixture given by (194), we see that the constant of integration
which was left undetermined is

C =
∑
n1(k1 −R log c1). (198)

§ 238. Knowing the value of the entropy of a gas mixture, we
may answer the question which we discussed in § 234, whether
and to what extent the entropy of a system of gases is increased
by diffusion. Let us take the simplest case, that of two gases, the
number of molecules being n1 and n2, diffusing into one another
under common and constant pressure and temperature. Before
diffusion begins, the entropy of the system is the sum of the
entropies of the gases, by (195),

n1(cv1 log θ +R log
θ

p1
+ k1) + n2(cv2 log θ +R log

θ

p2
+ k2).

After diffusion it is, by (197),

n1(cv1 log θ +R log
θ

pc1
+ k1) + n2(cv2 log θ +R log

θ

pc2
+ k2).

Therefore, the change of the entropy of the system is, by (196),

−n1R log c1 − n2R log c2,
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an essentially positive quantity. This shows that diffusion is
always irreversible.

It also appears that the increase of the entropy depends solely
on the number of the molecules n1, n2, and not on the nature—
e.g. the molecular weight, of the diffusing gases. The increase
of the entropy does not depend on whether the gases are chem-
ically alike or not. By making the two gases the same, there is
evidently no increase of the entropy, since no change of state en-
sues. It follows that the chemical difference of two gases, or, in
general, of two substances, cannot be represented by a continu-
ous variable; but that here we can speak only of a discontinuous
relation, either of equality or inequality. This fact involves a fun-
damental distinction between chemical and physical properties,
since the latter may always be regarded as continuous.

§ 239. The values of the entropy (197), the energy (193),
and the volume (191), substituted in (75), give the function Ψ,

Ψ =
∑
n1(cv1 log θ +R log

θ

pc1
+ k1 − cv1 −

h1
θ
−R);

or, putting the quantity, which depends on p and θ, and not on
the number of molecules,

cv1 log θ − h1
θ

+R log
θ

p
+ k1 − cv1 −R = ϕ1, (199)

Ψ =
∑
n1(ϕ1 −R log c1).

§ 240. This enables us to establish the condition of equi-
librium. If in a gas mixture a chemical change, which changes
the number of molecules n1, n2, . . . by δn1, δn2, . . . be possible,
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then such a change will not take place if the condition of equi-
librium (79) be fulfilled, i.e. if, when δθ = 0 and δp = 0,

δΨ = 0,

or

∑
(ϕ1 −R log c1) δn1 +

∑
n1 δ(ϕ1 −R log c1) = 0. (200)

The quantities ϕ1, ϕ2, . . . depend on θ and p only, therefore

δϕ1 = δϕ2 = · · · = 0.

Further,

n1 δ log c1 + n2 δ log c2 + · · · = n1

c1
δc1 +

n2

c2
δc2 + . . .

and, by (196),

= (n1 + n2 + . . . )(δc1 + δc2 + . . . ) = 0,

since
c1 + c2 + · · · = 1.

The condition of equilibrium, therefore, reduces to

∑
(ϕ1 −R log c1) δn1 = 0.

Since this equation does not involve the absolute values of the
variations δn1, but only their ratios, we may put

δn1 : δn2 : · · · = ν1 : ν2 : . . . (201)
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and take ν1, ν2, . . . to denote the number of molecules simul-
taneously passing into the mass of each constituent. They are
simple integers, positive or negative, according as the gas in
question is forming, or is being used up in the formation of oth-
ers. The condition of equilibrium now becomes

∑
(ϕ1 −R log c1)ν1 = 0,

or

ν1 log c1 + ν2 log c2 + · · · = ν1ϕ1 + ν2ϕ2 + . . .

R
.

The right-hand side of the equation depends only on temperat-
ure and pressure (199). The equation gives a definite relation
between the concentrations of the different kinds of molecules
for given temperature and pressure.

§ 241. We shall now substitute the values of ϕ1, ϕ2, . . . . If,
for shortness, we put the constants

∑
ν1(k1 − cv1 −R)

R
= log a,

∑
ν1h1
R

= b, (202)
∑
ν1cv1
R

= c, (203)

then

ν1 log c1+ν2 log c2+· · · = log a+(ν1+ν2+ . . . ) log
θ

p
− b
θ

+c log θ,
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or

cν11 c
ν2
2 . . . = a

(
θ

p

)ν1+ν2+...
e−

b
θ θc,

∏
cν11 = a

(
θ

p

)∑ ν1

e−
b
θ θc.

§ 242. This condition may be further simplified by mak-
ing use of the experimental fact (§ 50) that the atomic heat of
an element remains unchanged in its combinations. By equa-
tion (203) Rc is the change of the sum of the molecular heats of
all the molecules of the system during the reaction. The sum of
the molecular heats, however, being the sum of the atomic heats,
remains unchanged, hence c = 0, and the equation becomes

∏
cν11 = ae−

b
θ

(
θ

p

)∑ ν1

.

§ 243. According to this equation the influence of the pres-
sure on the equilibrium depends entirely on the number

∑
ν1,

which gives the degree to which the total number of molecules,
therefore also the volume of the mixture, is increased by the
reaction considered. Where the volume remains unchanged, as,
e.g., in the dissociation of hydriodic acid, considered below, the
equilibrium is independent of the pressure.

The influence of the temperature depends further on the con-
stant b, which is closely connected with the heat effect of the
reaction. For, by the first law,

Q = δU + p δV,
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which, by (193) and (191), θ and p being constant, becomes

Q =
∑

(cv1θ + h1 +Rθ) δn1.

If we refer the heat effect to the finite numbers ν, instead of the
infinitely small numbers δn, then the heat absorbed is:

L =
∑

(cv1θ + h1 +Rθ)ν1,

and by (202) and (203), again putting c = 0,

L = Rb+Rθ
∑
ν1,

or,
L = 1.97(b+ θ

∑
ν1) cal.

The term containing b refers to the heat spent in the increase
of the internal energy; the term containing θ to that spent in
external work.

§ 244. Before proceeding to numerical applications, we shall
enumerate the principal equations.

Suppose that in a gaseous system

n1,m1; n2,m2; n3,m3; . . .

(n the number of molecules, m the molecular weight) any chem-
ical change be possible, in which the simultaneous changes of
the number of molecules are

δn1 : δn2 : δn3 · · · = ν1 : ν2 : ν3 : . . .



gaseous system. 267

(ν simple, positive or negative integers) then there will be equi-
librium, if the concentrations

c1 =
n1

n1 + n2 + . . .
; c2 =

n2

n1 + n2 + . . .
; . . .

satisfy the condition

cν11 c
ν2
2 c

ν3
3 . . . = ae−

b
θ

(
θ

p

)ν1+ν2+ν3...
,

∏
cν11 = ae−

b
θ

(
θ

p

)∑ ν1

. (204)

The heat absorbed during the change at constant temperature
and pressure is

L = 1.97{b+ (ν1 + ν2 + . . . )θ} = 1.97(b+ θ
∑
ν1) cal., (205)

while the change of volume is

s = R(ν1 + ν2 + . . . )
θ

p
= R

θ

p

∑
ν1. (206)

§ 245. Dissociation of Hydriodic Acid.—Since hydri-
odic acid gas splits partly into hydrogen and iodine vapour, the
system is represented by three kinds of molecules:

n1HI; n2H2; n3I2;

The concentrations are:

c1 =
n1

n1 + n2 + n3

; c2 =
n2

n1 + n2 + n3

; c3 =
n3

n1 + n2 + n3

.
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The reaction consists in the transformation of two molecules
of HI into one of H2 and one of I2:

ν1 = −2; ν2 = 1; ν3 = 1.

By (204), therefore, in the state of equilibrium,

c−21 c12c
1
3 = ae−

b
θ ,

or
c2c3
c21

=
n2n3

n2
1

= ae−
b
θ . (207)

Since the total number of atoms of hydrogen (n1 + 2n2) and
of iodine (n1 + 2n3) in the system are supposed to be known,
equation (207) is sufficient for the determination of the three
quantities, n1, n2, and n3, at any given temperature. The pres-
sure has in this case no influence on the equilibrium. Any two
measurements of the degree of dissociation are sufficient for the
calculation of a and b. From Bodenstein’s measurements we
have for

θ = 273 + 448 = 712;
c2c3
c21

= 0.01984;

and for
θ = 273 + 350 = 623;

c2c3
c21

= 0.01494.

Hence, by (207),

a = 0.120; b = 1300.
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Thus the equilibrium of any mixture of hydriodic acid, hydro-
gen, and iodine vapour at any temperature, even when the hy-
drogen and the iodine are not present in equivalent quantities,
is determined by (207). Equation (205) gives the heat of dis-
sociation of two molecules of hydriodic acid into a molecule of
hydrogen and a molecule of iodine vapour:

L = 1.971× 1300 = 2560 cal.

§ 246. Dissociation of Iodine Vapour.—At high tem-
peratures iodine vapour appreciably decomposes, leading to a
system of two kinds of molecules:

n1I2; n2I.

The concentrations are

c1 =
n1

n1 + n2

; c2 =
n2

n1 + n2

.

The reaction consists in a splitting of the molecule I2 into two
molecules I,

∴ ν1 = −1; ν2 = 2;

and in equilibrium, by (204),

c−11 c22 =
n2
2

n1(n1 + n2)
= a′e−

b′

θ · θ
p
. (208)

a′ and b′ may be calculated from data given by Fr. Meier and
Crafts. When p = 728 mm. of mercury,

n2

2n1 + n2

= 0.145 when θ = 273 + 940 = 1213,

and = 0.662 when θ = 273 + 1390 = 1663.
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This gives, if p be measured in millimeters of mercury,

a′ = 9375; b′ = 14690;

from which the equilibrium of dissociation may be determined
for any temperature and pressure.

The heat of dissociation of a molecule of iodine is, by (205),

L = 1.97(14690 + θ) = 28900 + 1.97θ cal.

It will be seen that at such temperatures the external work, on
which the second term depends, has an appreciable influence.
At 1500◦ C. (θ = 1773) it amounts to 3500 cal., making the
heat of dissociation

L = 32400 cal.

§ 247. Graded Dissociation.—Since, by equation (208),
the concentration c2 of the monatomic iodine molecules does
not vanish even at low temperatures, the decomposition of the
iodine vapour should be taken into account in determining the
dissociation of hydriodic acid. This will have practically no in-
fluence on the results of § 245, but nevertheless we shall give
the more rigorous solution on account of the theoretical interest
which attaches to it.

There are now four kinds of molecules in the system:

n1HI; n2H2; n3I2; n4I.

Two kinds of chemical changes are possible:

(1) ν1 = −2; ν2 = 1; ν3 = 1; ν4 = 0; and

(2) ν ′1 = 0; ν ′2 = 0; ν ′3 = −1; ν ′4 = 2.
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There will be equilibrium for each of these, if, by (204),

(1) cν11 c
ν2
2 c

ν3
3 c

ν4
4 =

c2c3
c21

=
n2n3

n2
1

= ae−
b
θ ,

and

(2) c
ν′1
1 c

ν′2
2 c

ν′3
3 c

ν′4
4 =

c24
c3

=
n2
4

n3(n1 + n2 + n3 + n4)
= a′e−

b′

θ · θ
p
.

The constants a, b, a′, b′ have the values calculated above. The
total number of hydrogen atoms (n1 + 2n2) and of iodine atoms
(n1 + 2n3 + n4) being known, we have four equations for the
complete determination of the four quantities n1, n2, n3, n4.

§ 248. The general equation of equilibrium (204) also shows
that at finite temperatures and pressures none of the concentra-
tions, c, can ever vanish; in other words, that the dissociation
can never be complete, nor can it completely vanish. There is
always present a finite, though perhaps a very small number of
all possible kinds of molecules. Thus, in water vapour at any
temperature at least a trace of oxygen and hydrogen must be
present (see also § 259). In a great number of phenomena, how-
ever, these quantities are too small to be of any importance.



CHAPTER V.

DILUTE SOLUTIONS.

§ 249. To determine Ψ as a function of the temperature θ, the
pressure p, and the number n of the different kinds of molecules
in a system of any number of constituents and any number of
phases, we may use the method of the preceding chapter. It is
necessary first to find by suitable measurements the volume V ,
and the internal energy U of each single phase, and then calcu-
late the entropy Φ from the definition (60). A simple summa-
tion extending over all the phases gives, by (75), the function Ψ
for the whole system. On account of incomplete experimental
data, however, the calculation of Ψ can be performed, besides
for a gaseous phase, only for a dilute solution, i.e. for a phase in
which one kind of molecule far outnumbers all the others in the
phase. We shall in future call this kind of molecule the solvent,
the other kinds the dissolved substances. This differs from the
definition of § 220. If n0 be the number of molecules of the
solvent, n1, n2, n3, . . . the number of molecules of the dissolved
substances, then the solution may be considered dilute if n0 be
large in comparison with each of the numbers n1, n2, n3, . . . .
The state of aggregation of the substance is of no importance,
it may be solid, liquid, or gaseous.

§ 250. We shall now determine by the above method the
energy U and the volume V of a dilute solution. The important
simplification, to which this definition of a dilute solution leads,
rests on the mathematical theorem, that a finite, continuous,
and differentiable function of several variables, which have very
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small values, is necessarily a linear function of these variables.
This determines U and V as functions of n0, n1, n2, . . . . Physic-
ally speaking, this means that the properties of a dilute solution,
besides depending on the interactions between the molecules of
the solvent, necessarily depend only on the interactions between
the molecules of the solvent and the molecules of the dissolved
substances, but not on the interactions of the dissolved sub-
stances among themselves, for these are small quantities of a
higher order.

§ 251. The quotient
U

n0

, i.e. the internal energy divided by

the number of molecules of the solvent, remains unchanged if
the numbers, n0, n1, n2, . . . be varied in the same proportion;
for, by § 201, U is a homogeneous function of the number of

molecules n0, n1, n2, . . . , of the first degree.
U

n0

is, therefore,

a function of the ratios
n1

n0

,
n2

n0

, . . . , and also a linear function,

since these ratios are small, and the function is supposed to be
differentiable. The function is, therefore, of the form

U

n0

= u0 + u1
n1

n0

+ u2
n2

n0

+ . . . ,

where, u0, u1, u2 are quantities depending, not on the number
of molecules, but only on the temperature θ, the pressure p, and
the nature of the molecules. In fact, u0 depends only on the
nature of the solvent, since the energy reduces to n0u0, when
n1 = 0 = n2 = . . . , and u1 only on the nature of the first
dissolved substance and the solvent, and so on. u0, therefore,
corresponds to the interactions between the molecules of the
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solvent, u1 to those between the solvent and the first dissolved
substance, and so on. This contains a refutation of an objection,
which is often raised against the modern theory of dilute solu-
tions, that it treats dilute solutions simply as gases, and takes
no account of the influence of the solvent.

§ 252. If the dilution is not sufficient to warrant the use of
this very simple form of the function U , a more accurate relation
may be obtained by expanding Taylor’s series still further,

U

n0

= u0+u1
n1

n0

+· · ·+u11
(
n1

n0

)2

+2u12
n1

n0

·n2

n0

+u22

(
n2

n0

)2

+. . . .

The coefficients u11, u12, u22, . . . refer to the influence of the in-
teractions of the dissolved molecules with one another. This, in
fact, is the only practicable way of obtaining a rational thermo-
dynamical theory of solutions of any concentration.

§ 253. We shall here keep to the simple form, and write

U = n0u0 + n1u1 + n2u2 + . . . ,

and V = n0v0 + n1v1 + n2v2 + . . . .

}
(209)

How far these equations correspond to the facts may be de-
termined by the inferences to which they lead. If we dilute the
solution still further by adding one molecule of the solvent in the
same state of aggregation as the solution, keeping meanwhile the
temperature θ and the pressure p constant, the corresponding
change of volume and the heat effect may be calculated from the
above equations. One molecule of the pure solvent, at the same
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temperature and pressure, has the volume v0 and the energy u0.
After dilution, the volume of the solution becomes

V ′ = (n0 + 1)v0 + n1v1 + n2v2 + . . .

and the energy

U ′ = (n0 + 1)u0 + n1u1 + n2u2 + . . . .

The increase of volume brought about by the dilution is therefore

V ′ − (V + v0),

i.e. the increase of volume is zero. The heat absorbed is, by the
first law (47),

U ′ − (U + u0) + p
{
V ′ − (V + v0)

}
.

This also vanishes. These inferences presuppose that the num-
ber of molecules of the dissolved substances remain unchanged,
i.e. that no chemical changes (e.g. changes of the degree of dis-
sociation) are produced by the dilution. If such were the case,
the number of molecules of the dissolved substances would have
values in the equations for U ′ and V ′ different from those in the
equations for U and V , and therefore would not disappear on
subtraction. We may therefore enunciate the following proposi-
tion: Further dilution of a dilute solution, if no chemical changes
accompany the process, produces neither an appreciable change
of volume nor an appreciable heat effect ; or, in other words, any
change of volume or any heat effect produced by further dilution
of a dilute solution is due to chemical transformations among
the molecules of the dissolved substances.
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§ 254. We now turn to the calculation of the entropy Φ of
a dilute solution. If the number of molecules n0, n1, n2, . . . be
constant, we have, by (60),

dΦ =
dU + p dV

θ
,

and, by (209),

dΦ = n0
du0 + p dv0

θ
+ n1

du1 + p dv1
θ

+ n2
du2 + p dv2

θ
+ . . . .

Since u and v are functions of θ and p only, and not of n, each of
the coefficients of n0, n1, n2, . . . , must be a perfect differential,
i.e. there must be certain functions φ, depending only on θ and p,
such that

dφ0 =
du0 + p dv0

θ
,

dφ1 =
du1 + p dv1

θ
,

dφ2 =
du2 + p dv2

θ
.





(210)

We have, then,

Φ = n0φ0 + n1φ1 + n2φ2 + · · ·+ C, (211)

where the integration constant C cannot depend on θ and p,
but may be a function of the number of molecules. C may
be determined as a function of n0, n1, n2, . . . for a particular
temperature and pressure, and this will be the general expression
for C at any temperature and pressure.
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We shall now determine C as a function of n taking the par-
ticular case of high temperature and small pressure. By increas-
ing the temperature and diminishing the pressure, the solution,
whatever may have been its original state of aggregation, will
pass completely into the gaseous state. Chemical changes will
certainly take place at the same time, i.e. the number of mo-
lecules n will change. But we shall assume that the process
takes place in such a way as to leave the number of the different
kinds of molecules unaltered, because C remains constant only
in this case. Only an ideal process can accomplish this, since it
passes through unstable states. There is, however, no objection
to its use for our present purpose, since the above expression
for Φ holds not only for stable states of equilibrium, but for
all states characterized by quite arbitrary values of θ, p, n0, n1,
n2, . . . . Stable equilibrium is a special case, satisfying a further
condition to be established below.∗

∗Hr. Cantor maintains (Ann. d. Phys., 10, p. 205, 1903) that it is not
permissible to suppose that the gaseous state may be reached in this way.
“It must be proved that this represents a possible state of the substance,
that it may be at least a momentary state. But no theoretical proof of
this has been advanced, and direct experience does not at all justify such
an assumption.” In reply, it has first of all to be pointed out that the
possibility of varying the temperature and the pressure, keeping the num-
ber of molecules constant, merely depends on the fact that the number of
molecules together with the temperature and the pressure form the inde-
pendent variables which are necessary for the unique determination of the
state of solution under consideration. The variables are not subject to any
limitations, except that the number of atoms must remain on the whole
unchanged. This does not concern us here, and is chemically self-evident.
Therefore, from a general thermodynamical point of view, nothing stands
in the way of letting the pressure diminish and the temperature rise in any
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At a sufficiently high temperature, and a sufficiently low
pressure, any gaseous system possesses so small a density, that
it may be regarded as a mixture of perfect gases (§ 21, and § 43).
We have, therefore, by (194), bearing in mind that here the first
kind of molecule is denoted by the suffix 0,

Φ = n0

(
cv0 log θ +R log

θ

p

)

+ n1

(
cv1 log θ +R log

θ

p

)
+ · · ·+ C. (212)

The constant C is independent of θ and p, and has the value
given in (198). On comparing this with (211), it is seen that the
expression for Φ can pass from (211) into (212) by mere change
of temperature and pressure, only if the constant C is the same
in both expressions, i.e. if, by (198),

C = n0(k0 −R log c0) + n1(k1 −R log c1) + . . . .

Here k0, k1, k2, . . . are constants, and the concentrations are

c0 =
n0

n0 + n1 + n2 + . . .
; c1 =

n1

n0 + n1 + n2 + . . .
.

By (211), the entropy of a dilute solution becomes

Φ = n0(φ0 + k0−R log c0) +n1(φ1 + k1−R log c1) + . . . . (213)

way, keeping the number of molecules constant, if the formation of a new
phase is prevented. When this is recognized, it requires only the hypothesis
that by continuing this process the ideal gaseous state is finally reached—a
supposition which scarcely any one can object to, and which Hr. Cantor
does not, at least directly, contradict (Planck, Ann. d. Phys. 10, p. 436,
1903).—Tr.
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If we put, for shortness, the quantities which depend only on
θ and p,

φ0 + k0 −
u0 + pv0

θ
= ϕ0,

φ1 + k1 −
u1 + pv1

θ
= ϕ1,

φ2 + k2 −
u2 + pv2

θ
= ϕ2,





(214)

we have, finally, from (75), (213) and (209),

Ψ = n0(ϕ0 −R log c0) + n1(ϕ1 −R log c1)

+ n2(ϕ2 −R log c2) + . . . . (215)

This equation determines the thermodynamical properties of a
dilute solution.

§ 255. We may now proceed to establish the conditions of
equilibrium of a system consisting of several phases. As hitherto,
the different kinds of molecules in the phase will be denoted by
suffixes, and the different phases by dashes. For the sake of
simplicity the first phase will be left without a dash. The entire
system is then represented by

n0 m0, n1 m1, n2 m2, · · · | n′0 m′0, n′1 m′1, n′2 m′2, . . .
| n′′0 m′′0, n′′1 m′′1, n′′2 m′′2, · · · | (216)

The number of molecules is denoted by n, and the molecular
weights bym, and the individual phases are separated by vertical
lines. In the general formula we signify the summation over the
different kinds of molecules of one and the same phase by writing
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the individual terms of the summation; the summation over the
different phases, on the other hand, by the symbol

∑
.

In order to enable us to apply the derived formulæ, we shall
assume that each phase is either a mixture of perfect gases or a
dilute solution. The latter designation will be applied to phases
containing only one kind of molecule, e.g. a chemically homo-
geneous solid precipitate from an aqueous solution. One kind of
molecule represents the special case of a dilute solution in which
the concentrations of all the dissolved substances are zero.

§ 256. Suppose now that an isothermal isopiestic change
be possible, corresponding to a simultaneous variation δn0, δn1,
δn2, . . . , δn′0, δn

′
1, δn

′
2, . . . ... of the number of molecules n0, n1,

n2, . . . , n′0, n
′
1, n

′
2, . . . ; then, by (79), this change will not take

place, if at constant temperature and pressure

δΨ = 0

or, by (215), if

∑
(ϕ0−R log c0) δn0 + (ϕ1−R log c1) δn1 + (ϕ2−R log c2) δn2

+ · · ·+
∑
n0 δ(ϕ0 −R log c0) + n1 δ(ϕ1 −R log c1)

+ n2 δ(ϕ2 −R log c2) + · · · = 0.

The summation
∑

extends over all the phases of the system.
The second series is identically equal to zero for the same reason
as was given in connection with equation (200). If we again
introduce the simple integral ratio

δn0 : δn1 : δn2 : · · · : δn′0 : δn′1 : δn′2 : . . .

= ν0 : ν1 : ν2 : · · · : ν ′0 : ν ′1 : ν ′2 : . . . (217)
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then the equation of equilibrium becomes

∑
(ϕ0−R log c0) ν0+(ϕ1−R log c1) ν1+(ϕ2−R log c2) ν2+· · · = 0

or

∑
ν0 log c0 + ν1 log c1 + ν2 log c2 + . . . =

1

R

∑
ν0ϕ0 + ν1ϕ1 + . . .

= logK. (218)

K like ϕ0, ϕ1, ϕ2, is independent of the number of molecules n.

§ 257. The definition of K gives its functional relation to
θ and p.

∂ logK

∂θ
=

1

R

∑
ν0
∂ϕ0

∂θ
+ ν1

∂ϕ1

∂θ
+ ν2

∂ϕ2

∂θ
+ . . . ,

∂ logK

∂p
=

1

R

∑
ν0
∂ϕ0

∂p
+ ν1

∂ϕ1

∂p
+ ν2

∂ϕ2

∂p
+ . . . .

Now, by (214), we have for an infinitely small change of θ and p

dϕ0 = dφ0 −
du0 + p dv0 + v0 dp

θ
+
u0 + pv0

θ2
dθ

and therefore, by (210),

dϕ0 =
u0 + pv0

θ2
dθ − v0 dp

θ
.

From this it follows that

∂ϕ0

∂θ
=
u0 + pv0

θ2
;

∂ϕ0

∂p
= −v0

θ
.
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Similarly
∂ϕ1

∂θ
=
u1 + pv1

θ2
;

∂ϕ1

∂p
= −v1

θ
.

Hence

∂ logK

∂θ
=

1

Rθ2
∑

(ν0u0 + ν1u1 + . . . ) + p(ν0v0 + ν1v1 + . . . ),

∂ logK

∂p
= − 1

Rθ

∑
ν0v0 + ν1v1 + . . . .

Denoting by s the increase of volume of the system, and by L
the heat absorbed, when the change corresponding to (217) takes
place at constant temperature and pressure, then, by (209),

s =
∑
ν0v0 + ν1v1 + ν2v2 + . . .

and, by the first law of thermodynamics,

L =
∑

(ν0u0 + ν1u1 + . . . ) + p(ν0v0 + ν1v1 + . . . );

therefore
∂ logK

∂θ
=

L

Rθ2
(219)

and
∂ logK

∂p
= − s

Rθ
. (220)

The influence of the temperature on K, and therewith on the
condition of equilibrium towards a certain chemical reaction, is
controlled by the heat effect of that reaction, and the influence of
the pressure is controlled by the corresponding change of volume
of the system. If the reaction take place without the absorption
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or evolution of heat, the temperature has no influence on the
equilibrium. If it produce no change of volume the pressure has
no influence. The former equations (205) and (206) are particu-
lar cases of (219) and (220), as may be seen by substituting for
logK the special value obtained from (218) and (204):

logK = log a− b

θ
+ (ν1 + ν2 + . . . ) log

θ

p
.

§ 258. By means of equation (218) a condition of equilib-
rium may be established for each possible change in a given
system subject to chemical change. Of course, K will have a
different value in each case. This corresponds to the require-
ments of Gibbs’s phase rule, which is general in its application
(§ 204). The number of the different kinds of molecules in the
system must be distinguished from the number of the independ-
ent constituents (§ 198). Only the latter determines the num-
ber and nature of the phases; while the number of the different
kinds of molecules plays no part whatever in the application of
the phase rule. If another kind of molecule be introduced the
number of the variables increases, to be sure, but so does the
number of the possible reactions, and therewith, the number of
the conditions of equilibrium by the same amount, so that the
number of independent variables is quite independent thereof.

§ 259. Equation (218) shows further that, generally speak-
ing, all kinds of molecules possible in the system will be present
in finite numbers in every phase; for instance, molecules of H2O
must occur in any precipitate from an aqueous solution. Even
solid bodies in contact must partially dissolve in one another, if
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sufficient time be given. The quantity K, which determines the
equilibrium, possesses, according to the definition (218), a def-
inite, in general, a finite value for each possible chemical change,
and none of the concentrations c can, therefore, vanish so long as
the temperature and the pressure remain finite. This principle,
based entirely on thermodynamical considerations, has already
served to explain certain facts, e.g. the impossibility of removing
the last traces of impurity from gases, liquids, and even solids.
It also follows from it that absolutely semipermeable membranes
are non-existent, for the substance of any membrane would, in
time, become saturated with the molecules of all the various
kinds of substances in contact with one side of it, and thus give
up each kind of substance to the other side.

On the other hand, this view greatly complicates the calcu-
lation of the thermodynamical properties of a solution, since, in
order to make no mistake, it is necessary to assume from the
start the existence in every phase of all kinds of molecules pos-
sible from the given constituents. We must not neglect any kind
of molecule until we have ascertained by a particular experi-
ment that its quantity is inappreciable. Many cases of apparent
discrepancy between theory and experiment may probably be
explained in this way.

We shall now discuss some of the most important particular
cases. They have been arranged, in the first place, according to
the number of the independent constituents of the system; in
the second, according to the number of the phases.

§ 260. One Independent Constituent in One Phase.—
According to the phase rule, the nature of the phase depends
on two variables, e.g. on the temperature and the pressure. The
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phase may contain any number of different kinds of molecules.
Water, for instance, will contain simple, double, and multiple
H2O-molecules; molecules of hydrogen and oxygen, H2 and O2;
electrically charged ions H+, HO– and O– –, etc., in finite quant-
ities. The electrical charges of the ions do not play any im-
portant part in thermodynamics, so long as there is no direct
conflict between the electrical and the thermodynamical forces.
This happens when and only when the thermodynamical condi-
tions of equilibrium call for such a distribution of the ions in the
different phases of the system as would lead, on account of the
constant charges of the ions, to free electricity in any phase. The
electrical forces strongly oppose such a distribution, and the res-
ulting deviation from the pure thermodynamical equilibrium is,
however, compensated by differences of potential between the
phases. A general view of these electromolecular phenomena
may be got by generalizing the expressions for the entropy and
the energy of the system by the addition of electrical terms. We
shall restrict our discussion to states which do not involve elec-
trical phenomena, and need not consider the charges of the ions,
which we may treat like other molecules.

In the case mentioned above, then, the concentrations of all
kinds of molecules are determined by θ and p. The calculation
of the concentrations has succeeded so far only in the case of the
H+ and OH– ions (the number of the O– – ions is negligible), in
fact, among other methods, by the measurement of the electrical
conductivity of the solution, which depends only on the ions.
Kohlrausch and Heydweiller found the degree of dissociation of
water, i.e. the ratio of the mass of water split into H+ and OH–
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ions to the total mass of water to be, at 18◦ C.,

14.3× 10−10.

This number represents the ratio of the number of dissociated
molecules to the total number of molecules. We may determine
by thermodynamics the change of the dissociation with temper-
ature.

The condition of equilibrium will now be established. The
system is, by (216),

n2H2O; n1H
+; n2OH−.

Let the total number of molecules be

n = n0 + n1 + n2,

the concentrations are, therefore,

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
.

The chemical reaction in question,

ν0 : ν1 : ν2 = δn0 : δn1 : δn2,

consists in the dissociation of one H2O molecule into H+ and
OH–.

ν0 = 1; ν1 = 1; ν2 = 1;

and therefore, by (218), in the state of equilibrium

− log c0 + log c1 + log c2 = K,
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or, since c1 = c2, and c0 = 1 nearly,

2 log c1 = logK.

This gives, by (219), the relation between the concentration and
the temperature:

2
∂ log c1
∂θ

=
1

R
· L
θ2
. (221)

According to Arrhenius, L, the heat necessary for the dissoci-
ation of one molecule of H2O into H+ and OH–, is equal to the
heat of neutralization of a strong monobasic acid and base in di-
lute aqueous solution. J. Thomsen’s experiments give for mean
temperatures:

L =
4045000

θ
cal.

On reducing calories to C.G.S. units, we get

∂ log c1
∂θ

=
1

2× 1.971
× 4045000

θ3
.

On integrating, we have

log c1 = −4045000

7.884
· 1

θ2
= −513000

θ2
+ const.

c1 = Ce−
513000
θ2 .

The value of the constant C is found from the degree of dissoci-
ation at 18◦ C. (θ = 291);

cl = c2 = 14.3× 10−10,

∴ C = 6.1× 10−7.
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Hence the degree of dissociation for any temperature is,

c1 = 6.1e−
513000
θ2 × 10−7.

This agrees well with the electrical conductivity of pure water
when measured at different temperatures. Only at the abso-
lute zero of temperature does the dissociation, and with it the
conductivity, vanish. On the other hand, it does not increase
indefinitely with temperature, but reaches a maximum value C.

§ 261. One Independent Constituent in Two or
Three Phases.—The main features of these cases have already
been discussed in Chapter II., §§ 205 to 207, and § 213.

§ 262. Two Independent Constituents in One Phase.
—(A substance dissolved in a homogeneous solvent). According
to the phase rule, one other variable besides the pressure and
the temperature is arbitrary, e.g. the number of the molecules
dissolved in 1 litre of the solution, a quantity which may be
directly measured. The values of these three variables determine
the concentrations of all kinds of molecules, whether they have
their origin in dissociation, association, formation of hydrates,
or hydrolysis of the dissolved molecules. Let us consider the
simple case of a binary electrolyte, e.g. acetic acid in water.
The system is represented by

n0H2O, n1CH3 · COOH, n2H
+, n3CH3

− · COO.

The total number of molecules,

n = n0 + n1 + n2 + n3,
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is only slightly greater than n0. The concentrations are

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; c3 =

n3

n
.

The reaction to be considered is represented by

ν0 : ν1 : ν2 : ν3 = δn0 : δn1 : δn2 : δn3,

and consists in the dissociation of one molecule of CH3·COOH
into its two ions.

ν0 = 0; ν1 = −1; ν2 = 1; ν3 = 1.

Therefore, in equilibrium,

− log c1 + log c2 + log c3 = logK;

or, since c2 = c3,
c22
c1

= K. (222)

Now, we may regard the sum

c1 + c2 = c

as known, since the total number (n1 + n2) of the undissociated
and the dissociated molecules of the acid, and the total num-
ber of water molecules, which may be put = n, are measured
directly. Hence c1 and c2 may be calculated from the last two
equations.

c1
c

=
n1

n1 + n2

= 1− K

2c

(√
1 +

4c

K
− 1

)
;

c2
c

=
n2

n1 + n2

=
K

2c

(√
1 +

4c

K
− 1

)
.
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With increasing dilution (decreasing c), the ratio
c2
c

increases in

a definite manner approaching the value 1, i.e. complete disso-
ciation. This also gives for the electrical conductivity of a solu-
tion of given concentration Ostwald’s so-called law of dilution
of binary electrolytes,∗ which has been experimentally verified
in numerous cases. In a manner quite similar to that of § 260,
the heat effect of the dissociation shows how the degree of dis-
sociation depends on the temperature. Conversely, as was first
shown by Arrhenius, the heat of dissociation may be calculated
from the rate of change of the dissociation with temperature.

§ 263. Usually, however, in a solution, not one, but a large
number of reactions will be possible. Accordingly, the complete
system contains many kinds of molecules. As another example,
we shall discuss the case of an electrolyte capable of splitting
into ions in several ways, viz. an aqueous solution of sulphuric
acid. The system is represented by

n0H2O, n1H2SO4, n2H
+, n3HSO4

−, n4SO4
−−.

The total number of molecules is

n = n0 + n1 + n2 + n3 + n4 (nearly equal to n0).

The concentrations are

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; c3 =

n2

n
; c4 =

n3

n
.

∗K =
λv

λ∞(λ∞ − λv)v
, where λv is the molecular conductivity at di-

lution v; λ∞ the molecular conductivity at infinite dilution; and v the
molecular volume of the electrolyte.—Tr.
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Here two different kinds of reactions

ν0 : ν1 : ν2 : ν3 : ν4 = δn0 : δn1 : δn2 : δn3 : δn4

must be considered; first, the dissociation of one molecule of
H2SO4 into H+ and HSO4

–:

ν0 = 0; ν1 = −1; ν2 = 1; ν3 = 1; ν4 = 0;

second, the dissociation of the ion HSO4
– into H+ and SO4

– –:

ν0 = 0; ν1 = 0; ν2 = 1; ν3 = −1; ν4 = 1.

Hence, by (218), there are two conditions of equilibrium:

− log c1 + log c2 + log c3 = logK

and

log c2 − log c3 + log c4 = logK ′;

or
c2c3
c1

= K

and
c2c4
c3

= K ′.

This further condition must be added, viz. that the total
number of SO4 radicals (n1 + n2 + n3) must be equal to half
the number of H atoms (2n1 + n2 + n3); otherwise the system
would contain more than two independent constituents. This
condition is

2c4 + c3 = c2.
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Finally, the quantity of sulphuric acid in the solution is supposed
to be given:

c1 + c3 + c4 = c.

The last four equations determine c1, c2, c3, c4, and hence the
state of equilibrium is found.

For a more accurate determination it would be necessary
to consider still other kinds of molecules. Every one of these
introduces a new variable, but also a new possible reaction, and
therefore a new condition of equilibrium, so that the state of
equilibrium remains uniquely determined.

§ 264. Two Independent Constituents in Two Phases.
—The state of equilibrium, by the phase rule, depends on two
variables, e.g. temperature and pressure. The wide range of
cases in point makes a subdivision desirable, according as only
one phase contains both constituents in appreciable quantity, or
both phases contains both constituents.

Let us first take the simpler case, where one (first) phase con-
tains both constituents, and the other (second) phase contains
only one single constituent. Strictly speaking this never occurs
(by § 259), but in many cases it is a sufficient approximation
to the actual facts. The application of the general condition of
equilibrium (218) to this case leads to different laws, according
as the constituent in the second phase plays the part of dis-
solved substance or solvent (§ 249) in the first phase. We shall
therefore divide this case into two further subdivisions.

§ 265. The Pure Substance in the Second Phase
forms the Dissolved Body in the First.—An example of
this is the absorption of a gas, e.g. carbon dioxide in a liquid of
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comparatively small vapour pressure. The system is represented
by

nH2O, n1CO2 | n′0CO2.

The concentrations of the different kinds of molecule of the sys-
tem in the two phases are

c0 =
n0

n0 + n1

; c1 =
n1

n0 + n1

; c′0 =
n′0
n′0

= 1.

The reaction
ν0 : ν1 : ν ′0 = δn0 : δn1 : δn′0

consists in the evaporation of one molecule of carbon dioxide
from the solution, therefore,

ν0 = 0, ν1 = −1, ν ′0 = 1.

The condition of equilibrium

ν0 log c0 + ν1 log c1 + ν ′0 log c′0 = logK,

is, therefore,
− log c1 = logK, (223)

or, at a given temperature and pressure (for these determine K),
c1 the concentration of the gas in the solution is determined. The
change of concentration with pressure and temperature is found
by substituting (223) in (219) and (220):

∂ log c1
∂p

=
1

R
· s
θ
, (224)

∂ log c1
∂θ

= − 1

R
· L
θ2
. (225)
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s is the increase of volume of the system, L the heat absorbed
during isothermal-isopiestic evaporation of one gram molecule
of CO2. Since s represents nearly the volume of one gram mo-
lecule of carbon dioxide gas, we may, by (16), put

s =
Rθ

p
,

and equation (224) gives

∂ log c1
∂p

=
1

p
.

On integrating, we have

log c1 = log p+ const.

or
c1 = Cp (226)

i.e. the concentration of the dissolved gas is proportional to the
pressure of the free gas on the solution (Henry’s law). The
factor C, which is a measure of the solubility of the gas, still
depends on the temperature, since (225) and (226) give

∂ logC

∂θ
= − 1

R
· L
θ2
.

If, therefore, heat is absorbed during the evaporation of the gas
from the solution, L is positive, and the solubility decreases with
increase of temperature. Conversely, from the variation of C
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with temperature, the heat effect produced by the absorption
may be calculated;

L = −Rθ
2

C
· ∂C
∂θ

.

According to the experiments of Naccari and Pagliani, the sol-
ubility of carbon dioxide in water at 20◦ (θ = 293), (expressed
in a unit which need not be discussed here), is 0.8928, its tem-
perature coefficient −0.02483; therefore, by (34),

L =
1.971× 2932 × 0.02483

0.8928
= 4700 cal.

Thomsen found the heat effect of the absorption of one gram
molecule of carbon dioxide to be 5880 cal. The error (according
to Nernst) lies mainly in the determination of the coefficient of
solubility. Of the heat effect, the amount

Rθ = 1.97× 293 = 586 cal.

corresponds, by (48), to external work.

§ 266. A further example is the saturation of a liquid with
an almost insoluble salt; e.g. succinic acid in water. The system
is represented by

n0H2O, n1

CH2 − COOH
|
CH2 − COOH,

∣∣∣∣∣∣
n′0

CH2 − COOH
|
CH2 − COOH,

if the slight dissociation of the acid in water be neglected. The
calculation of the condition of equilibrium gives, as in § 223,

− log c1 = logK,



dilute solutions. 296

c1 is determined by temperature and pressure. Further, by (219),

L = −Rθ2∂ log c1
∂θ

. (227)

Van’t Hoff was the first to calculate L by means of this equation
from the solubility of succinic acid at 0◦ C. (2.88) and at 8.5◦ C.
(4.22)

∂ log c1
∂θ

=
loge 4.22− loge 2.88

8.5
= 0.04494.

This gives, for θ = 273, L = −1.971×2732×0.4494 = 6600 cals.;
i.e. on the precipitation of one gram molecule of the solid from
the solution, 6600 cals. are given out. Berthelot found the heat
of solution to be 6700 cals.

If L be regarded as independent of the temperature, which
is permissible in many cases as a first approximation, the equa-
tion (227) may be integrated with respect to θ, giving

log c1 =
L

Rθ
+ const.

§ 267. The relation (227) becomes inapplicable if the salt in
solution undergoes an appreciable chemical transformation, e.g.
dissociation. For then, besides the ordinary molecules of the
salt, the products of the dissociation are present in the solution;
for example, in the system of water and silver acetate,

n0H2O, n1CH3COOAg, n2Ag+, n3CH3
− · COO | n′0CH3COOAg.

The total number of molecules in the solution:

n = n0 + n1 + n2 + n3 (nearly = n0).
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The concentrations of the different molecules in both phases are

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; c3 =

n3

n
; c′0 =

n′0
n′0

= 1.

The reactions,

ν0 : ν1 : ν2 : ν3 : ν ′0 = δn0 : δn1 : δn2 : δn3 : δn′0,

are:
(1) The precipitation of a molecule of the salt from the solu-

tion:

ν0 = 0, ν1 = −1, ν2 = 0, ν3 = 0, ν ′0 = 1.

(2) The dissociation of a molecule of silver acetate:

ν0 = 0, ν1 = −1, ν2 = 1, ν3 = 1, ν ′0 = 0.

Accordingly, the two conditions of equilibrium are:
(1) − log c1 = logK,
(2) − log c1 + log c2 + log c3 = logK ′;

or, since c2 = c3,
c22
c1

= K ′.

At given temperature and pressure, therefore, there is in the sat-
urated solution of a salt a definite number of undissociated mo-
lecules; and the concentration (c2) of the dissociated molecules
may be derived from that of the undissociated (c1) by the law
of dissociation of an electrolyte, as given in (222).

Now, since by measuring the solubility the value of c1 + c2,
and by measuring the electrical conductivity the value of c2,
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may be found, the quantities K and K ′ can be calculated for
any temperature. Their dependence on temperature, by (219),
serves as a measure of the heat effect of the precipitation of
an undissociated molecule from the solution, and of the disso-
ciation of a dissolved molecule. Jahn has thus given a method
of calculating the actual heat of solution of a salt, from meas-
urements of the solubility of the salt and of the conductivity of
saturated solutions at different temperatures; i.e. the heat effect
which takes place when one gram molecule of the solid salt is

dissolved, and the fraction
c2

c1 + c2
is dissociated into its ions, as

is actually the case in the process of solution.

§ 268. The Pure Substance occurring in the Second
Phase forms the Solvent in the First Phase.—This case
is realized when the pure solvent in any state of aggregation is
separated out from a solution of another state of aggregation,
e.g. by freezing, evaporation, fusion, and sublimation. The type
of such a system is

n0 m0, n1 m1, n2 m2, n3 m3, · · · | n′0 m′0.

The question whether the solvent has the same molecular weight
in both phases, or not, is left open. The total number of mo-
lecules in the solution is

n = n0 + n1 + n2 + n3 + . . . (nearly = n0).

The concentrations are

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; . . . c′0 =

n′0
n′0

= 1.
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A possible transformation,

ν0 : ν1 : · · · : ν ′0 = δn0 : δn1 : · · · : δn′0,

is the passage of a molecule of the solvent from the first phase
to the second phase, i.e.

ν0 = −1; ν1 = 0; ν2 = 0; . . . ν ′0 =
m0

m′0
. (228)

Equilibrium demands, by (218), that

− log c0 +
m0

m′0
log c′0 = logK,

and, therefore, on substituting the above values of c0 and c′0,

log
n

n0

= logK.

But
n

n0

= 1 +
n1 + n2 + n3 + . . .

n0

,

and, therefore, since the fraction on the right is very small,

n1 + n2 + n3 + . . .

n0

= logK. (229)

By the general definition (218), we have

logK =
1

R
(ν0ϕ0 + ν1ϕ1 + ν2ϕ2 + · · ·+ ν ′0ϕ

′
0),

and, therefore, on substituting the values of ν from (228),

n1 + n2 + n3 + . . .

n0

=
1

R

(
m0

m′0
ϕ′0 − ϕ0

)
. (230)
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This expression shows that logK also has a small value.
Suppose for the moment that logK = 0, i.e. that the pure

solvent takes the place of the solution

n1 + n2 + · · · = 0,

then, by (230),
ϕ0

m0

=
ϕ′0
m′0

.

Since ϕ0 and ϕ′0 depend only on θ, p and the nature of the
solvent, and not on the dissolved substances, the above equa-
tion asserts a definite relation between temperature and pres-
sure, which is, in fact, the condition which θ and p must fulfil,
in order that the two states of aggregation of the pure solvent
may exist in contact. On substituting the values of ϕ0 and
ϕ′0 from (214), we return immediately to the condition of equi-
librium (101) which we deduced in the second chapter. The
pressure (vapour pressure) may be taken as depending on the
temperature, or the temperature (boiling point, melting point)
as depending on the pressure.

Returning now to the general case expressed in equa-
tion (230), we find that the solution of foreign molecules, n1, n2,
n3, . . . affects the functional relation between θ and p, which
holds for the pure solvent. The deviation, in fact, depends only
on the total number of dissolved molecules, and not on their
nature. To find its amount in measurable quantities, we may
introduce either p0, the pressure which would exist in the system
at the given temperature θ, if there were no dissolved molecules
(lowering of the vapour pressure), or the temperature θ0 which
would exist at the given pressure p, if there were no dissolved
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molecules (elevation of the boiling point, depression of the freez-
ing point). If we take the second alternative, θ− θ0 will be very
small, and we may, therefore, put

logK =
∂ logK

∂θ
(θ − θ0),

or, by (219),

logK =
1

R
· L
θ2

(θ − θ0),

and

∴
n1 + n2 + n3 + . . .

n0

=
L

Rθ2
(θ − θ0),

or

θ − θ0 =
Rθ2

n0L
(n1 + n2 + n3 + . . . ). (231)

By this formula the elevation of the boiling point may be calcu-
lated directly from the number of the dissolved molecules, the
temperature, and the heat of vaporization. Since L refers to the
evaporation of one gram molecule of the liquid, the product n0L
depends only on the mass, and not on the molecular weight (m0)
of the liquid solvent. If L is to be expressed in calories, we must
put R = 1.97 (by (34)). For instance, for one litre of water
under atmospheric pressure,

n0L = 1000× 536 cal. (approximately), θ = 373,

and, therefore, the elevation of the boiling point is

θ − θ0 =
1.97× 3732

1000× 536
(n1 + n2 + . . . )

= 0.51(n1 + n2 + . . . )◦ C.
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§ 269. Let us now compare equation (231) with the rela-
tion (183), also referring to the elevation of the boiling point,
but deduced from more general principles independent of any
molecular theory. The equation is

θ − θ0 =
cθ2ϕ

L
. (232)

Here c denotes the ratio of the mass M2 of the dissolved non-
volatile substance to the mass M1 of the solvent. In the present
notation,

c =
n1m1 + n2m2 + . . .

n0m0

. (233)

L, in (232), is the heat of vaporization per unit mass of the
solvent; therefore, in the present notation,

L

m0

. (234)

The equation (232), therefore, becomes

θ − θ0 =
(n1m1 + n2m2 + . . . )θ2ϕ

n0L
.

Comparison with (231) shows that the two theories will agree
perfectly only if

ϕ =
R(n1 + n2 + . . . )

n1m1 + n2m2 + . . .
. (235)

The molecular theory here set forth specializes the previous
more general theory in such a way as to assign the particular
value (235) to the quantity ϕ, formerly defined by (165).
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§ 270. The quantity ϕ was found to be of importance for a
whole series of other properties of solutions besides the elevation
of the boiling point. These relations may at once be specialized
for dilute solutions by substituting the value of cϕ from (233)
and (235),

cϕ =
R(n1 + n2 + n3 + . . . )

n0m0

, (236)

and for L and s, by (234), the values

L

m0

and
s

m0

. (237)

In this way, for the lowering of the vapour pressure of dilute
solutions, we deduce, from (180),

p0 − p =
Rθ

n0s
(n1 + n2 + n3 + . . . ). (238)

If the vapour of the solvent form a perfect gas, and the specific
volume of the solution be negligible in comparison with that of
the vapour, then s (the change of volume of the system produced
by the evaporation of a gram molecule of the liquid) is equal to
the volume of the vapour formed. By (228),

s = R
m0

m′0
· θ
p
,

therefore, by (238),

p0 − p =
m′0p(n1 + n2 + . . . )

n0m0

,
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or, the relative lowering of the vapour pressure,

p0 − p
p

= (n1 + n2 + n3 + . . . )
m′0
n0m0

.

This relation is frequently stated thus:—The relative lowering
of the vapour pressure of a solution is equal to the ratio of the
number of the dissolved molecules (n1 + n2 + n3 + . . . ) to the
number of the molecules of the solvent (n0), or, what is the same
thing in dilute solutions, to the total number of the molecules of
the solution. This proposition holds only, as is evident, if m0 =
m′0, i.e. if the molecules of the solvent possess the same molecular
weight in the vapour as in the liquid. This, however, is not
generally true, as, for example, in the case of water. It may be
well therefore to emphasize this fact, that nothing concerning the
molecular weight of the solvent can be inferred from the relative
lowering of the vapour pressure, any more than from its boiling
point, freezing point, or osmotic pressure. Measurements of this
kind will not, under any circumstances, lead to anything but the
total number (n1+n2+ . . . ) of the dissolved molecules. Thus, in
the last equation the product n0m0 is immediately determined
by the mass of the liquid solvent, and the mole-weight, m′0, of
the vapour by its density.

§ 271. For the depression of the freezing point of a dilute
solution, it follows from (186), (236), and (237), that

θ′0 − θ′ =
Rθ2

n0L′
(n1 + n2 + n3 + . . . ),

L′ being the heat of solidification of a gram molecule of the
solvent. The product, n0L

′, is given by the mass of the solvent; it
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is independent of its molecular weight. To express L′ in calories
we must put R = 1.97 (by (34)).

Take water as an example: For 1 litre of water under atmo-
spheric pressure, n0L

′ = 1000×80 cal. approximately. θ′0 = 273,
and therefore the depression of the freezing point is

θ′0 − θ′ =
1.97× 2732

1000× 80
(n1 + n2 + . . . ) = 1.84(n1 + n2 + . . . )◦ C.

§ 272. Finally, for the osmotic pressure P we have, from
(190),

P =
Rθ

n0m0v
(n1 + n2 + n3 + . . . ),

v is the specific volume of the solution, and therefore the
product n0m0v is approximately its whole volume V . Hence

P =
Rθ

V
(n1 + n2 + n3 + . . . ),

an expression identical with the characteristic equation of a
mixture of perfect gases with the number of molecules, n1, n2,
n3, . . . .

§ 273. Each of the theorems deduced in the preceding para-
graphs contains a method of determining the total number of
the dissolved molecules in a dilute solution. Should the number
calculated from such a measurement disagree with the number
calculated from the percentage composition of the solution on
the assumption of normal molecules, some chemical change of
the dissolved molecules must have taken place by dissociation,
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association, hydrolysis, or the like. This inference is of great im-
portance in the determination of the chemical nature of dilute
solutions. The number and nature of the different kinds of mo-
lecules are uniquely determined by the total number of molecules
only in quite special cases, viz. when the dissolved substance un-
dergoes a chemical change only in one way. In this case the total
mass of the dissolved substance and the total number of mo-
lecules formed by it in the solution are sufficient for the calcula-
tion of the number of all the different kinds of molecules present.
This case is exceptional, however, for we have seen (§ 259) that
all the molecules a substance is capable of forming necessarily
occur in the solution in finite quantities. As soon as two reac-
tions (e.g. H2SO4=2 H++SO4

– – and H2SO4=H++HSO4
–) must

be considered, the analysis of the equilibrium remains indeterm-
inate, since there are more unknown quantities than determ-
ining equations. For this reason there is no direct connection
between the depression of freezing point, the elevation of the
boiling point, etc., on the one hand, and electrical conductiv-
ity on the other. For the one set of quantities depends on the
total number of the dissolved molecules, charged or uncharged,
while the other depends on the number and nature of molecules
charged with electricity (ions), which cannot, in general, be cal-
culated from the former. Conversely, a disagreement between
the depression of the freezing point as calculated from the con-
ductivity, and as observed, is not in itself an objection to the
theory, but rather to the assumptions made in the calculation
concerning the kinds of molecules present.

Raoult was the first to establish rigorously by experiment
the relation between the depression of the freezing point and
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the number of the molecules of the dissolved substance; and
van’t Hoff gave a thermodynamical explanation and generaliza-
tion of it by means of his theory of osmotic pressure. Applica-
tion to electrolytes was rendered possible by Arrhenius’ theory
of electrolytic dissociation. Thermodynamics has led quite in-
dependently, by the method here described, to the necessity of
postulating chemical changes of the dissolved substances in di-
lute solutions.

§ 274. Each Phase contains both Constituents in Ap-
preciable Quantity.—The most important case is the evapor-
ation of a liquid solution, in which not only the solvent, but
also the dissolved substance is volatile. The general equation of
equilibrium (218), being applicable to mixtures of perfect gases
whether the mixture may be supposed dilute or not, holds with
corresponding approximation for a vapour of any composition.
The liquid, on the other hand, must be assumed to be a dilute
solution.

In general, all kinds of molecules will be present in both
phases, and therefore the system is represented by

n0 m0, n1 m1, n2 m2, · · · | n′0 m0, n′1 m1, n′2 m2, . . . .

The molecules have the same molecular weight in both phases.
The total number of molecules in the liquid is

n = n0 + n1 + n2 + . . . (nearly = n0),

in the vapour
n′ = n′0 + n′1 + n′2 + . . . .
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The concentrations of the different kinds of molecules are, in the
liquid,

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; . . .

in the vapour,

c′0 =
n′0
n′

; c′1 =
n′1
n′

; c′2 =
n′2
n′

; . . . .

The reaction

ν0 : ν1 : ν2 : · · · : ν ′0 : ν ′1 : ν ′2 : . . .

= δn0 : δn1 : δn2 : · · · : δn′0 : δn′1 : δn′2 : . . .

consists in the evaporation of a molecule of the first kind, and
therefore

ν0 = 0, ν1 = −1, ν2 = 0, . . . ν ′0 = 0, ν ′1 = 1, ν ′2 = 0, . . . .

The equation of equilibrium becomes

− log c1 + log c′1 = logK,

or
c′1
c1

= K.

For every kind of molecule, which possesses the saute molecular
weight in both phases, there is a constant ratio of distribution,
which is independent of the presence of other molecules (Nernst’s
law of distribution).
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If, on the other hand, a molecule of the solvent evaporate,
we have,

ν0 = −1, ν1 = 0, ν2 = 0, . . . ν ′0 = 1, ν ′1 = 0, ν ′2 = 0, . . . ;

and the equation of equilibrium becomes

− log c0 + log c′0 = logK,

where

− log c0 = log
n

n0

= log

(
1 +

n1 + n2 + . . .

n0

)
=
n1 + n2 + . . .

n0

= c1 + c2 + . . . (239)

∴ c1 + c2 + · · ·+ log c′0 = logK, (240)

where c1, c2, . . . , the concentrations of the molecules dissolved
in the liquid, have small values. Two cases must be considered.

Either, the molecules in m0 in the vapour form only a small
or at most a moderate portion of the number of the vapour
molecules. Then the small numbers c1, c2, . . . , may be neglected
in comparison with the logarithm, and therefore

log c′0 = logK.

This asserts that the concentration of the molecules of the
solvent in the vapour does not depend on the composition of
the solution. An example of this is the evaporation of a dilute
solution, when the solvent is not very volatile, e.g. alcohol in
water. The partial pressure of the solvent (water) in the vapour
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is not at all dependent on the concentration of the solution, but
is equal to that of the pure solvent.

Or, the molecules m0 in the vapour far outnumber all the
other molecules, as, e.g., when alcohol is the solvent in the li-
quid phase, water the dissolved substance. The concentrations
c1, c2, . . . must not be neglected, and, as in (239),

log c′0 = −(c′1 + c′2 + . . . );

equation (240) therefore becomes

(c1 + c2 + . . . )− (c′1 + c′2 + . . . ) = logK.

This relation contains an extension of van’t Hoff’s laws con-
cerning the elevation of the boiling point, the diminution of the
vapour pressure, etc., and asserts that when the substance dis-
solved in the liquid also passes in part into the vapour, the elev-
ation of boiling point or the diminution of the vapour pressure
depends no longer on the concentrations of the molecules dis-
solved in the liquid, but on the difference of their concentra-
tions in the liquid and in the vapour. If this difference be zero,
the distillate being of the same composition as the liquid, the
elevation of the boiling point and the diminution of the vapour
pressure vanish. This conclusion has already been reached from
a more general point of view (§ 219). If the concentration of
the dissolved substance in the vapour be larger than that in the
liquid, as may happen in the evaporation of an aqueous solu-
tion of alcohol, the boiling point falls, while the vapour pressure
rises.

Exactly analogous theorems may, of course, be deduced for
other states of aggregation. Thus, the more general statement



dilute solutions. 311

of the law concerning the freezing point would be: If both the
solvent and the dissolved substance of a dilute solution solidify in
such a way as to form another dilute solution, the depression of
the freezing point is not proportional to the concentrations of the
dissolved substances in the liquid, but to the difference of the
concentrations of the dissolved substances in the liquid and solid
phases, and changes sign with this difference. The solidification
of some alloys is an example.

While these laws govern the distribution of the molecules in
both phases, the equilibrium within each phase obeys the laws,
which were deduced in § 262, etc. We again meet with the laws
of dissociation, association, etc. (Nernst).

§ 275. Three Independent Constituents in one Phase.
—Two dissolved substances in a dilute solution will not affect
one another unless they have certain kinds of molecules in com-
mon, for there is no transformation possible, and therefore no
special condition of equilibrium to fulfil. If two dilute solutions of
totally different electrolytes in the same solvent be mixed, each
solution will behave as if it had been diluted with a correspond-
ing quantity of the pure solvent. The degree of the dissociation
will rise to correspond to the greater dilution.

It is different when both electrolytes have an ion in common,
as, for example, acetic acid and sodium acetate. In this case,
before mixing there are two systems:

n0H2O, n1CH3 · COOH, n2H
+, n3CH3

− · COO,

and

n′0H2O, n′1CH3 · COONa, n′2Na+, n′3CH3
− · COO.
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As in (222), for the first solution,

c22
c1

= K, or
n2
2

n1n0

= K, (241)

for the second,

c′22
c′1

= K ′, or
n′22
n′1n

′
0

= K ′. (242)

After mixing the two, we have the system

n̄0H2O, n̄1CH3 · COOH, n̄2CH3 · COONa,

n̄3H
+, n̄4Na+, n̄5CH3

− · COO,

where, necessarily,

n̄0 = n0 + n′0 (number of H2O molecules),

n̄2 + n̄4 = n′1 + n′2 (number of Na atoms),

n̄1 + n̄3 = n1 + n2 (number of H atoms),

n̄3 + n̄4 = n̄5 (number of + ions
= number of − ions).





(243)

The total number of molecules in the system is

n̄ = n̄0 + n̄1 + n̄2 + n̄3 + n̄4 + n̄5 (nearly = n̄0).

The concentrations are

c̄0 =
n̄0

n̄
; c̄1 =

n̄1

n̄
; c̄2 =

n̄2

n̄
; c̄3 =

n̄3

n̄
; c̄4 =

n̄4

n̄
; c̄5 =

n̄5

n̄
.
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In the system there are two different reactions,

ν0 : ν1 : ν2 : ν3 : ν4 : ν5 = δn̄0 : δn̄1 : δn̄2 : δn̄3 : δn̄4 : δn̄5,

possible; first, the dissociation of one molecule of acetic acid,

ν0 = 0, ν1 = −1, ν2 = 0, ν3 = 1, ν4 = 0, ν5 = 1,

and therefore the condition of equilibrium is, by (218),

− log c̄1 + log c̄3 + log c̄5 = logK,

or

c̄3c̄5
c̄1

= K, or
n̄3 · n̄5

n̄1 · n̄0

=
n̄3 · n̄5

n̄1(n0 + n′0)
= K; (244)

second, the dissociation of a molecule of sodium acetate,

ν0 = 0, ν1 = 0, ν2 = −1, ν3 = 0, ν4 = 1, ν5 = 1,

whence, for equilibrium,

− log c̄2 + log c̄4 + log c̄5 = logK ′, or
c̄4c̄5
c̄2

= K ′,

or
n̄4 · n̄5

n̄2 · n̄0

=
n̄4 · n̄5

n̄2(n0 + n′0)
= K ′. (245)

The quantities K and K ′ are the same as those in (241)
and (242). They depend, besides on θ and p, only on the
nature of the reaction, and not on the concentrations, nor on
other possible reactions. By the conditions of equilibrium (244)
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and (245), together with the four equations (243), the values
of the six quantities n̄0, n̄1, . . . , n̄5 are uniquely determined,
if the original solutions and also the number of molecules n0,
n1, . . . and n′0, n

′
1, . . . be given.

§ 276. The condition that the two solutions should be iso-
hydric, i.e. that their degree of dissociation should remain un-
changed on mixing them, is evidently expressed by the two equa-
tions

n̄1 = n1, and n̄2 = n′1,

i.e. the number of undissociated molecules of both acetic acid
and sodium acetate must be the same in the original solutions
as in the mixture. It immediately follows, by (243), that

n̄3 = n2, n̄4 = n′2, n̄5 = n2 + n′2.

These values, substituted in (244) and (245), and combined with
(241) and (242), give

n2(n2 + n′2)

n1(n0 + n′0)
= K =

n2
2

n1n0

,

n′2(n2 + n′2)

n′1(n0 + n′0)
= K ′ =

n′22
n′1n

′
0

,

whence the single condition of isohydric solutions is

n2

n0

=
n′2
n′0
, or c2 = c′2 (= c3 = c′3),

or, the two solutions are isohydric if the concentration of the
common ion CH3

–COO is the same in both. This proposition
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was enunciated by Arrhenius, who verified it by numerous exper-
iments. In all cases where this condition is not realized, chemical
changes must take place on mixing the solutions, either dissoci-
ation or association. The direction and amount of these changes
may be estimated by imagining the dissolved substances separ-
ate, and the entire solvent distributed over the two so as to form
isohydric solutions. If, for instance, both solutions are originally
normal (1 gram molecule in 1 litre of solution), they will not
be isohydric, since sodium acetate in normal solution is more
strongly dissociated, and has, therefore, a greater concentration
of CH3

–·COO-ions, than acetic acid. In order to distribute the
solvent so that the concentration of the common ion CH3

–·COO
may be the same in both solutions, some water must be with-
drawn from the less dissociated electrolyte (acetic acid), and ad-
ded to the more strongly dissociated (Na-acetate). For, though
it is true that with decreasing dilution the dissociation of the
acid becomes less, the concentration of free ions increases, as
§ 262 shows, because the ions are now compressed into a smaller
quantity of water. Conversely, the dissociation of the sodium
acetate increases on the addition of water, but the concentra-
tion of the free ions decreases, because they are distributed over
a larger quantity of water. In this way the concentration of the
common ion CH3

–·COO may be made the same in both solu-
tions, and then their degree of dissociation will not be changed
by mixing. This is also the state ultimately reached by the two
normal solutions, when mixed. It follows, then, that when two
equally diluted solutions of binary electrolytes are mixed, the
dissociation of the more weakly dissociated recedes, while that
of the more strongly dissociated increases still further.
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§ 277. Three Independent Constituents in Two
Phases.—We shall first discuss the simple case, where the
second phase contains only one constituent in appreciable quant-
ity. A solution of an almost insoluble salt in a liquid, to which
a small quantity of a third substance has been added, forms
an example of this case. Let us consider an aqueous solution
of silver bromate and silver nitrate. This two-phase system is
represented by

n0H2O, n1AgBrO3, n2AgNO3,

n3Ag+, n4BrO3
−, n5NO3

− | n′0AgBrO3.

The concentrations are

c0 =
n0

n
; c1 =

n1

n
; c2 =

n2

n
; . . . ; c′0 =

n′0
n′0
,

where

n = n0 + n1 + n2 + n3 + n4 + n5 (nearly = n0).

Of the possible reactions,

ν0 : ν1 : ν2 : ν3 : ν4 : ν5 : ν ′0
= δn0 : δn1 : δn2 : δn3 : δn4 : δn5 : δn′0,

we shall first consider the passage of one molecule of AgBrO3

from the solution, viz.

ν0 = 0, ν1 = −1, ν2 = 0, . . . , ν ′0 = 1.
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The condition of equilibrium is, therefore,

− log c1 + log c′0 = logK

or

c1 =
1

K
. (246)

The concentration of the undissociated molecules of silver
bromate in the saturated solution depends entirely on the tem-
perature and the pressure.

We may now consider the dissociation of a molecule of
AgBrO3 into its two ions.

ν0 = 0, ν1 = −1, ν2 = 0, ν3 = 1, ν4 = 1, ν5 = 0, ν ′0 = 0,

and, therefore,

− log c1 + log c3 + log c4 = logK ′,
c3c4
c1

= K ′,

or, by (246),

c3c4 =
K ′

K
, (247)

i.e. the product of the concentrations of the Ag+ and BrO3
– ions

depends only on temperature and pressure. The concentration
of the Ag+-ions is inversely proportional to the concentration
of the BrO3

–-ions. Since the addition of silver nitrate increases
the number of the Ag+-ions, it diminishes the number of the
BrO3

–-ions, and thereby the solubility of the bromate, which is
evidently measured by the sum c1 + c4.
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We shall, finally, consider the dissociation of a molecule
of AgNO3 into its ions.

ν0 = 0, ν1 = 0, ν2 = −1, ν3 = 1, ν4 = 0, ν5 = 1, ν ′0 = 0,

whence, by (218),
c3c5
c2

= K ′′. (248)

To equations (246), (247), and (248), must be added, as a fourth,
the condition

c3 = c4 + c5,

and, as a fifth, the value of c2 + c5, given by the quantity of the
nitrate added, so that the five unknown quantities, c1, c2, c3,
c4, c5, are uniquely determined.

The theory of such influences on solubility was first estab-
lished by Nernst, and has been experimentally verified by him,
and more recently by Noyes.

§ 278. The more general case, where each of the two phases
contains all three constituents, is realized in the distribution
of a salt between two solvents, which are themselves soluble
to a small extent in one another (e.g. water and ether). The
equilibrium is completely determined by a combination of the
conditions holding for the transition of molecules from one phase
to another with those holding for the chemical reactions of the
molecules within one and the same phase. The former set of
conditions may be summed up in Nernst’s law of distribution
(§ 274). It assigns to each kind of molecule in the two phases
a constant ratio of distribution, which is independent of the
presence of other dissolved molecules. The second set is the
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conditions of the coexistence of three independent constituents
in one phase (§ 275), to which must be added Arrhenius’ theory
of isohydric solutions.

§ 279. The same method applies to four or more independ-
ent constituents combined into one or several phases. The nota-
tion of the system is given in each case by (216), and any pos-
sible reaction of the system may be reduced to the form (217),
which corresponds to the condition of equilibrium (218). All the
conditions of equilibrium, together with the given conditions of
the system, give the number of equations which the phase rule
prescribes for the determination of the state of equilibrium.

When chemical interchanges between the different sub-
stances in solution are possible, as, e.g., in a solution of dis-
sociating salts and acids with common ions, the term degree
of dissociation has no meaning, for the ions may be combined
arbitrarily into dissociated molecules. For instance, in the solu-
tion

n0H2O, n1NaCl, n2KCl, n3NaNO3,

n4KNO3, n5Na+, n6K
+, n7Cl−, n8NO3

−

we cannot tell which of the Na+-ions should be regarded as be-
longing to NaCl, and which to NaNO3. In such cases the only
course is to characterize the state by the concentrations of the
dissolved molecules.

The above system consists of water and four salts, but, be-
sides the solvent, only three are independent constituents, for
the quantities of the Na, the K, and the Cl determine that of
the NO3. Accordingly, by § 204 (α = 4, β = 1) all the concen-
trations are completely determined at given temperature and
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pressure by three of them. This is independent of other kinds of
molecules, and other reactions, which, as is likely, may have to
be considered in establishing the conditions of equilibrium.

§ 280. If in a system of any number of independent constitu-
ents in any number of phases, the condition of equilibrium (218)
is not satisfied, i.e. if for any virtual isothermal-isopiestic change

∑
ν0 log c0 + ν1 log c1 + ν2 log c2 + · · · ≷ logK,

then the direction of the change which will actually take place
in nature is given by the condition dΨ > 0 (§ 147). If we now
denote by ν0, ν1, ν2, . . . , simple whole numbers, which are not
only proportional to, but also of the same sign as the actual
changes which take place, then we have, by (215),

∑
ν0 log c0 + ν1 log c1 + ν2 log c2 + · · · < logK,

for the direction of any actual isothermal isopiestic change,
whether it be a chemical change inside any single phase, or
the passage of molecules between the different phases. The
constant K is defined by (218).

To find the connection between the difference of the expres-
sions on the right and left and the time of the reaction is immedi-
ately suggested, and, in fact, a general law for the velocity of an
irreversible isothermal isopiestic process may be thus deduced.
We shall not, however, enter further into these considerations in
this book.
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Stoffe.” Zeitchr. f. phys. Chem. 2. S. 405–414. 1888. (§ 274).
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